A HW/FW Co-Designed SSD Controller Architecture to Boost up SSD Performance

Wei Xu
August 8, 2019
Explosive NAND IF Bandwidth

- ONFI1.0: 50MB/s
- ONFI2.0: 133MB/s
- ONFI2.1: 200MB/s
- ONFI3.0: 400MB/s
- ONFI3.2: 533MB/s
- ONFI4.0: 800MB/s
- ONFI4.1: 1200MB/s

x 60
Client SSD Trend

- **SATA3 6Gb/s**
- **ONFI1.0**: 50MB/s
- **ONFI2.0**: 133MB/s
- **ONFI2.1**: 200MB/s
- **ONFI3.0**: 400MB/s
- **ONFI3.2**: 533MB/s
- **ONFI4.0**: 800MB/s
- **ONFI4.1**: 1200MB/s

- **PCIe Gen3x4 32Gb/s**: x 5
- **PCIe Gen4x4 64Gb/s**: x 2
SSD Performance Issue

Performance vs. NAND Die #

- Host IF Limit
- Sequential Performance
- Random Performance Limit
- Random Performance

Huge Gap!
Bottleneck of SSD Performance

Heavy FW Workloads

CPU Sub-System

Host

Host Controller

Data Buffer

Flash Controller

NAND
Details of CPU Workloads

- Typical solution: Increasing CPU cores
 - More CPU partitions
 - Complicated FW architecture
 - Low power efficiency

Heavy CPU workload

SSD Performance

CPU Core #

NAND CMD Scheduling
FTL Management
CMD Translation
Buffer Management
Host CMD Protocol

[Graph showing SSD Performance vs. CPU Core #]

Flash Memory Summit 2019
Santa Clara, CA

www.maxio-tech.com
Cross-Layer Design Methodology

- HW/FW Co-designed architecture to offload CPU
 - Seamless FW/HW flow
 - Simple FW architecture
 - High power-efficient
Unified HW/FW Data Structure

- HW/FW Shared data structure (e.g., descriptor), containing all information about the atomic data unit managed by FW.
- HW automation for descriptor pool management, including descriptor allocation/release and queue management.
Virtual Buffer Management

- Physical buffer segments shared by virtual buffers
 - Virtual buffers are defined by FW
 - HW automation of buffer allocation/release

- Virtual buffer attributes
 - Buffer ID
 - Min/max size
 - Buffer allocation policy
Maxio NPU Technology

- Private instruction set for NAND flash memory
 - Flexible NAND command sequence
 - Support NAND models of all NAND vendors

- Specified NAND Processing Unit (NPU) architecture - NPU
 - Support multiple thread
 - HW automation of thread interleaving
 - NPU core: 4 pipeline stages for high speed NAND IF
Maxio MAP1001 Performance Result

Flash Memory Summit 2019
Santa Clara, CA

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Random Read</th>
<th>Random Write</th>
</tr>
</thead>
<tbody>
<tr>
<td>8CH x 1CE</td>
<td>217K</td>
<td>305K</td>
</tr>
<tr>
<td>8CH x 2CE</td>
<td>360K</td>
<td>546K</td>
</tr>
<tr>
<td>8CH x 4CE</td>
<td>672K</td>
<td>616K</td>
</tr>
<tr>
<td>8CH x 4CE x 2LUN</td>
<td>> 800K</td>
<td>607K</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Read [MB/s]</th>
<th>Write [MB/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Seq</td>
<td></td>
</tr>
<tr>
<td>8CH x 1CE</td>
<td>3461</td>
<td>1282</td>
</tr>
<tr>
<td>8CH x 2CE</td>
<td>889.0</td>
<td>1251</td>
</tr>
<tr>
<td>8CH x 4CE</td>
<td>1895</td>
<td>1281</td>
</tr>
<tr>
<td>8CH x 4CE x 2LUN</td>
<td>79.63</td>
<td>284.0</td>
</tr>
</tbody>
</table>
Thank you!

Visit us @Booth: #728
Contact us: sales@maxio-tech.com