SMART STORAGE ENGINE
FOR INTEL® 3D XPOINT™ TECHNOLOGY
AND QLC 3D NAND SSDs

Jack Zhang yuan.zhang@intel.com
Cloud & Enterprise Architect
Non-Volatile Solution Group, Intel Corp.
All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at intel.com.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

Intel, Intel Optane, Xeon, and others are trademarks of Intel Corporation in the U.S. and/or other countries.

© Intel Corporation.

*Other names and brands may be claimed as the property of others.
• **Media**

Intel® Optane™ Memory Media

• **SSD**

Intel® Optane™ SSD

• **Persist Memory**

Intel® Optane™ DC Persistent Memory
QLC DC SSDs (Capacity Data)

1. Improving Perf, QoS & Endurance to replace TLC (combining with Intel® Optane™ SSDs)
2. Accelerate warm storage innovations with better performance/capacity scalability
3. Replace HDDs for reduced cost in warm tier and push HDD further down to Cold tier

Intel® Optane™ DC SSDs (Working Data)

1. Fundamentally transform the storage hierarchy and accelerate arch innovations
2. Eliminate DC storage bottlenecks for bigger, more affordable data sets
3. Sustained cost competitiveness for Intel Optane™ SSDs + QLC vs. TLC solutions

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.
Problem Statements: Media Awareness

• “Awareness” needed for Intel® Optane™ SSD/Intel® Optane™ Persistent Memory
 - Write-in-place, symmetric write/read
 - Random = Sequential, efficiency on low QD

• “Awareness” needed for QLC SSDs
 - Data need to be sequentially write to QLC SSDs
 - Larger than 4K IU, 16K/64K etc

• “Awareness” needed for different storage infrastructures
 - Block (e.g., vSAN*, CEPH)
 - Object (e.g., S3, CEPH)
 - File (e.g., HDFS, CEPH)
 - KV (e.g., RocksDB, …)

• Today’s typical solution like Intel Optane™ SSD for metadata/journal, QLC for data is not “media aware”, could not survive heavy random write workloads

*Other names and brands may be claimed as the property of others.
Solution: “Media Aware” Smart Storage Engine

- "Awareness" for Intel® Optane™ technology
 - Design new data structure for Intel® Optane™ SSD/Intel® Optane™ Persistent Memory
 - Write-in-place, symmetric write/read, Random=Seq
- "Awareness" for QLC
 - Data structure that have data sequentially write to QLC
 - Configurable IU size from 4K to 128K
- "Awareness" for different storage infrastructures through Smart KV and volume engine
 - Block
 - Object
 - File
 - Key Value

=Other names and brands may be claimed as the property of others.
Configurable Good/Better/Best

System

- **Good**
 QLC(s) Only – good performance/best cost reduction

- **Better**
 Intel® Optane™ SSD + QLC SSDs - > replacing TLC SSDs
 – better performance, better cost

- **Best**
 Intel® Optane™ SSDs Only – best performance

Other names and brands may be claimed as the property of others.
Smart Storage Engine @ system
---Configurable ratio Intel® Optane™ SSD : QLC SSDs

Other names and brands may be claimed as the property of others.
Smart K-V Data Store (SKVDS) Architecture
Smart Key Value Data Store Architecture

- **Key-Value APIs over PCIe*/NVMe*:
 - Put, Get, Del
 - Bypass kernel and filesystem
 - Efficient KV mapping table
 - Disk space management, WAL, GC
 - Full disk log write
 - Randwrite -> seqwrite (pipelined)

- **Three task threads:**
 1. Read from QLC SSDs
 2. Write direct to Intel Optane SSDs or QLC SSDs (optimize for Intel Optane SSDs as write buffer)
 3. Garbage Collection on QLC SSDs (minimize QLC garbage collection + special functions, e.g., TRIM)

*Other names and brands may be claimed as the property of others.
Multi-Tier Architecture

Hash Entry
- Entry On Disk
- Logic Stamp
- Pointer

Read Cache
- KV Pair

Write Buffer
- KV Pair

RAM

Segment Header Data Header Key Value Data Header K V ... Data Header K ... Data Header K Value Value

Inlined KV pair

Intel® Optane™ SSD/ Optane™ Persistent Memory

Super Block Index Table Segment Table Segment Segment Segment ... Segment

Main Store Area

Meta Area

Migration shards

SSDs

SSD-1 Main Store Area Segment Segment ... Segment

SSD-2 Main Store Area Segment Segment ... Segment

...
Software Architecture

User Application

Key-Value Request Handling

Disk/SSD

KV Mapping Table

Disk Space Mgmt

Write Ahead Log

GC

Function Models

Disk IO Control Model

Put
Get
Del

Write Ahead Log

DK

GC

Disk Space Mgmt

Function Models

User Application
High-Level Architecture

a. Fast in-memory indexing structure with optimized per-key memory usage, along with power-loss recovery algorithms.
b. Log write to maximize write performance and minimize write amplification.
Smart KV Data Store early results
Quality of Service -- QLC SSD ONLY

Test setup:
Intel® Xeon® CPU E5-2699 v4 @ 2.20GHz
DRAM = 128GB
Storage 1x Intel® SSD D5-P4320 7.68TB

Test parameters
Key=16B,
Value=4096B
100M key pairs
Random mixed
70% read
30% write

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. See configurations in Legal Disclaimers for details. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.
Quality of Service – Intel® Optane™ SSD + QLC SSD

Test setup:
Intel® Xeon® CPU E5-2699 v4 @ 2.20GHz
DRAM = 128GB
Storage
1x Intel® SSD DC P4800X 375GB
1x Intel® SSD D5-P4320 7.68TB

Test parameters
Key=16B, Value=4096B
100M key pairs
Random mixed
70% read
30% write

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. See configurations in Legal Disclaimers for details. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.
SKVDS vs RockDB

Test Configuration

<table>
<thead>
<tr>
<th>Server</th>
<th>DP</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>Xeon 2699v4 2.2GHz 22cores x2</td>
</tr>
<tr>
<td>Memory</td>
<td>64GB x2</td>
</tr>
<tr>
<td>SSD</td>
<td>P3700 2TB FW: 8DV101H0</td>
</tr>
<tr>
<td>OS</td>
<td>CentOS 7.4</td>
</tr>
<tr>
<td>Kernel</td>
<td>3.10.0-693.el7.x86_64</td>
</tr>
<tr>
<td>DPDK</td>
<td>17.08</td>
</tr>
<tr>
<td>SPDK</td>
<td>17.10</td>
</tr>
<tr>
<td>RocksDB</td>
<td>spdk-v5.6.1</td>
</tr>
</tbody>
</table>

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. See configurations in Legal Disclaimers for details. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.
Thank you