Getting the Most Out of QLC-based NVMe Storage

NVME-202-1: PCIe/NVMe Storage

Andy Watson
CTO, WekaIO
watson@weka.io, @the_andywatson
How To Leverage QLC’s Lower Cost

- Combine QLC with another layer of flash
 - Hybrid approach protects QLC durability and Accelerates Performance
 - Accelerate performance at lower overall cost

<table>
<thead>
<tr>
<th></th>
<th>SCM</th>
<th>SLC</th>
<th>MLC</th>
<th>TLC</th>
<th>QLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endurance (Write Cycles)</td>
<td>1M – 3M</td>
<td>20K – 100K</td>
<td>3K – 10K</td>
<td>500 – 2K</td>
<td>100 – 1K</td>
</tr>
<tr>
<td>~Cost per GB 2020+</td>
<td>< $1.00</td>
<td>< $0.80</td>
<td>< $0.40</td>
<td>< $0.20</td>
<td>< $0.10</td>
</tr>
</tbody>
</table>

* These $/GB estimates are very approximate and only for relative comparison purposes

- Admittedly, not a completely new idea . . .
For Laptops, A Shipping Product

INTEL® OPTANE™ MEMORY H10 WITH SOLID STATE STORAGE

INTEL® OPTANE™ TECHNOLOGY
- Accelerate your PC with breakthrough responsiveness so you can search and find files faster, and launch applications quicker
- Conquer storage-demanding applications with smart software that automatically learns your computing behaviors to accelerate frequent tasks

INTEL® QLC 3D NAND TECHNOLOGY
- Get up to 1TB of storage capacity with an Intel® QLC 3D NAND SSD into a smaller footprint
- Transfer data at PCIe® speeds, unleashing the full power of QLC, and getting from data to productivity faster

The above was captured from https://www.pcworld.com/article/3389742/intel-optane-memory-h10-ssd-review.html
In that simple Intel “H10” hybrid combination —
- Big files & Sequential IO are sent to the QLC device
- Small files & Random IO are sent to the Optane device
- For a single user on a laptop, very workable …
- … but not appropriate for a petabyte-scale fileserver

Need a more nuanced hybrid-QLC strategy
- Server performance expectations are higher
- Workloads & data sets are more complicated
No Writes Go Directly to QLC

- Incoming Writes go first to non-QLC flash
 - All data lands in “Front Layer” (e.g., TLC or 3D-XPoint)
 - Process data before move or copy to QLC layer

- Concerns: size & frequency of data being written
 - Absorb Write traffic with durable Front Layer
 - Mitigate wearing out QLC with high rate of small Writes
 - TLC and 3D-XPoint also offer lower-latency Write perf
 - Small Writes are more suitable for Front Layer
 - QLC 8-KB page size is larger than Front Layer 4-KB page size
Absorb Volatility in Front Layer

- **Filesystem Metadata Updates**
 - On a fileserver, directories are often rapidly updated
 - Similarly, other metadata can be aggressively modified
 - Repetitive inode updates (i.e., to `atime`, `ctime`, `mtime`, etc.)
- **Read-Modify-Writes and Appends in general**
 - Journaling and Logs can be hammered hard
- **Strategy: Wait, then Coalesce**
 - Commit updates to Front Layer, then subsequently . . .
 - . . . Rewrite to QLC after overwrites quiesce
Group Data By ETTL

- Organize data by ETTL (Expected Time To Live)
 - How long until it will be modified or deleted
 - Blocks of QLC pages must be erased together
 - Therefore, ideally data written together in adjacent 8KB pages can “age out” together

- Improved capacity utilization
- Extended Endurance via Reduced Churn
Low-Level QLC Writes

- When writing to QLC layer, if available …
 - … Leverage a PCS (Page Collection Scheme) *
 - Fill higher % of 8-KB QLC pages (16 512-byte sectors)

- Write whole stripes whenever possible
 - More efficient erasure coding (or RAID)

Net Effect of All These Techniques

- Enable embracing QLC for high-performance file-server configurations while:
 - Improving overall system performance
 - Lowering Overall System Cost-per-GB
 - Extending Life of QLC
 - Improving QLC Capacity Utilization
Incoming Writes

- TLC (50–500 TB)
 - segregate metadata
 - coalesce, then sort by TTL (Time-To-Live)
 - prioritize to QLC based on LRU + longest TTL

- QLC (1–100's PB)
 - PCS (Page Collection System)
 - Background tasks: indexing; global dedupe operations; async replication

- S3-API Object Storage
 - One or More
 - On-Premises
 - or
 - Cloud-based S3-API systems

Note: Data can also move directly between the TLC and Object Storage without passing thru QLC
Other Considerations

- Optionally send all writes to 2 QLC devices *
 - Parity-rebuilding a failed 256-GB QLC device could take > a week
 - Copying from a surviving mirrored device should take < 2 days
 - In the era of PCI 4.0, this would be < 1 day

- But mirroring QLC probably will not make sense until prices fall even lower

Local replication, distinct from remote replication for system-level Disaster Recovery purposes