STT–MRAM: High Density Persistent Memory Solution

Sanjeev Aggarwal
Safe Harbor Statement

Forward-Looking Statements

This presentation contains “forward-looking statements” that involve risks, uncertainties and assumptions. If the risks or uncertainties materialize or the assumptions prove incorrect, our results may differ materially from those expressed or implied by such forward-looking statements. All statements other than statements of historical fact could be deemed forward-looking statements, including, but not limited to: any estimates of addressable market size and our ability to capture that market, market trends and market opportunities, customer growth, product availability, technology developments, or other future events; any statements about historical results that may suggest future trends for our business; any statements regarding our plans, strategies or objectives with respect to future operations or business performance; any statements regarding future economic conditions; and any statements of assumptions underlying any of the foregoing. These statements are based on estimates and information available to us at the time of this presentation and are not guarantees of future performance. Actual results could differ materially from our current expectations as a result of many factors, including, but not limited to: market adoption of our products; our limited operating history; our ability to raise capital; our history of losses; our rate of growth; our ability to predict customer demand for our existing and future products; our ability to hire, retain and motivate employees; the effects of competition, including price competition; technological, regulatory and legal developments; and developments in the economy and financial markets.

We assume no obligation, and do not intend, to update these forward-looking statements, except as required by law.
MRAM Brings Native Persistence to Memory Workloads

- **Non-Volatile**: Maintains data without power or refresh
- **Fast**: Read/write similar to DRAM
- **Endurance**: Handles memory workloads

MRAM combines performance of memory with persistence of storage.
Everspin STT-MRAM in Production

- **256Mb ST-DDR3 MRAM**
 - 40nm CMOS
 - 1.5V DDR3 VDD/VDDQ
 - Standard JEDEC DDR3 ball configuration

- **1Gb ST-DDR4 MRAM**
 - 28nm CMOS
 - 1.2V standard DDR4 VDD/VDDQ
 - Standard JEDEC DDR4 ball configuration
STT-MRAM – Easy to Integrate with Standard CMOS

Off Axis Integration, 256Mb

On Axis Integration, 1Gb

MRAM Layer Additions

MRAM Layer Additions
Free Layer Engineering for STT Efficiency

- Free layer designs with different materials
 - Lower V_c and higher E_b indicates better STT switching efficiency
 - Figure of Merit for product efficiency and reliability is: $E_b(105 \ C) / V_c(20 \ C)$
- Each series is a range of thickness
- E_b is flat but V_c varies for a range of thickness near the optimum E_b design point
- E_b increased $\sim 35\%$ with $<5\%$ increase in V_c from lowest to highest E_b design
Materials Design for Scaling

- Data retention bakes at 160°C
- Data retention flips measured for 4 nominal bit sizes and fit to obtain E_b
- E_b decreases linearly with bit diameter
- Magnitude of E_b is tunable through free layer design
The field switching distribution correlates to the resistance to thermal fluctuation

The large separation from 0 field indicates essentially zero probability of spontaneous flips
Better Margin for Manufacturability

- Error rates < 1E-6 (raw bit error rate) achieved for both 256Mb and 1Gb
 - Relative Vswitch of > 1.5 for 256Mb and > 1.4 for 1Gb
 - Improved (narrower) distribution in both directions going from 256Mb to 1Gb
Zero fails for range of write pulse widths ≥ 10-12 ns for 256Mb and ≥ 6-8 ns for 1Gb
- Endurance is better with longer pulses due to the lower required write bias
- Clock rate is not affected by the choice of pulse width in this range

Improved switching efficiency for 1Gb enables better performance
- Full array cycling with stress to accelerate fails
 - Used bias and temperature acceleration to predict endurance at operating conditions
 - Product endurance >1E10 cycles to BER specification is demonstrated

- Improved extrinsics for 1Gb (linear down to -14 on Weibull scale)
Widening Operating Temperature Range

- Baked parts at elevated temperature to accelerate fails
 - Free layers engineered to achieve desired data retention
- 10yr @ 85C data retention achieved for 1Gb parts with 1e10 endurance
Everspin has successfully transitioned STT-MRAM from R&D to volume manufacturing.

STT-MRAM is approaching DRAM Density and Feature Size:
- Switching efficiency improvements for STT-MRAM expected to scale with bit size enabling

Source for SRAM, DRAM, NAND:
The International Technology Roadmap for Semiconductors
The International Roadmap for Devices and Systems
Acknowledgements

- Colleagues at Everspin Technologies:

- Partners for STT-MRAM Manufacturing & Development
Thank you.