Gen-Z®: Built-In Security for the Data Centric World

Presented by: Michael Krause, HPE VP / Fellow, Gen-Z Lead Architect

FLASH MEMORY SUMMIT 8-7-19
Edge-to-Core Impacts to Data Generation & Access

Data generation location
Mobile / IoT / Enterprise Edge

Data type and composition

Data integrated optimized for advanced analytics

Time to take action

Data transformation to useful format

Governance and security regulations compliance

Data impact to business goals

© Gen-Z Consortium 2019
Infrastructure Security Matters More Than Ever

August 21, 2018 Microsoft removes multiple websites allegedly created by Fancy Bear to influence US Elections

2016 Yahoo reveals millions of accounts hacked cut $350M from Verizon’s Yahoo acquisition price

3Q2019 US Department of Defense to award $10B JEDI Cloud Contract

August 16, 2017 Maersk reported that the NotPetya cyberattack cost ~$300M in lost revenue; multiple executives terminated

December 19, 2013 Target retail store breach cost $252M & CEO terminated
Everything is an Attack Vector

© Gen-Z Consortium 2019
Industry embracing workload-optimized compute

- From edge-to-core with custom/semi-custom compute
 - General-purpose compute adding new ISA capabilities
- Workload drives performance, data movement, power, cost...
 - Edge-based compute & reduction critical to reducing backbone & data center communications load & improving responsiveness
 - Minimal data movement to optimize power, reduce latency, reduce infrastructure cost

Multi-petabyte data sets are common

- Data must be accessible by any compute module at any scale
 - Multiple compute modules need to access 100s to 1000s of memory & storage modules at any given time
 - NVMe over PCIe limited scalability / constrained sharing model
 - NVMe over Fabrics requires additional fabric (adds cost/complexity) & suffers similar native PCIe sharing constraints
 - NVMe over Gen-Z easily scales to 8192 NVMe SSDs per CPU or accelerator & simplifies multi-way sharing
 - Gen-Z Buffer Ops represent the next step for memory/storage data movement
- Data at rest must be secure/private
- Data movement must be secure/private

© Gen-Z Consortium 2019
• Composability eliminates “hard choices”
• Logical systems composed of physical components
 • Or subparts or subregions of components (e.g. memory/storage/I/O)
• Logical systems match exact workload requirements
 • No stranded resources overprovisioned to workloads
 • Facilitates data-centric computing via shared memory
 • Eliminates data movement: Do more with less, reduce/optimize cost
Gen-Z Basics

High Performance
- High Bandwidth, Low Latency, Scalable
- Eliminates protocol translation cost/complexity/latency
- Eliminates software complexity/overhead/latency

Reliable
- No stranded resources or single-point-of-failures
- Transparently bypass path and component failure
- Enables highly-resilient data (e.g. RAID / erasure codes)

Secure
- Provides strong hardware-enforced isolation and security

Flexible/Extensible
- Multiple topologies, component types, use cases, etc.

Compatible
- Supports PCIe PHY up to 32 GT/s, 802.3/OIF 25 GT/s to 112 GT/s PAM 4, unmodified OS support

Economic
- Lowers CAPEX/OPEX, unlocks/accelerates innovation
Gen-Z Hardware-Enforced Access Control

Supports multiple mechanisms to ensure authorized component and resource access

- Authorization is managed by software and enforced by hardware
- Authorization does not equate to security
 - Authorization mitigates the potential damage caused by erroneous or failing components
 - Authorization mitigates the potential damage caused by malicious actors

Supported techniques (access violations reported to management):

- Access Keys—these provide component group-level communication access control
- Access Request and Access Response controls—these provide fine-grain component-level access controls
- Region Keys (R-Keys)—provide page-level access control (required to share resource)
- R-Key Domains—provide Requester R-Key range filter access control
- Switch packet filtering—used to filter which packets can be relayed and where
- Component Destination Structure—used to configure authorized peer components
- Nonce validation to prevent rogue hardware replacing a component during deep low-power
 - Validated whenever a link transitions from low-power state to operational state
Gen-Z Component Authentication

DMTF®-based Component Authentication¹

- Gen-Z members donated authentication security objects² to DMTF to enable multiple industry bodies to support a consistent & robust security ecosystem
- Authenticates hardware, configuration, & firmware/software
- Component authentication performed at component manufacturing, component integration, initialization & power cycle events, runtime, component addition/replacement/decommissioning

Data objects exchanged using MCTP over Gen-Z

- MCTP operates over multiple interconnects: I2C/I3C, PCIe, Gen-Z, ...
- MCTP simplifies management => improved security infrastructure

¹ High-level component authentication white paper applicable to multiple interconnects / technologies is available at: https://genzconsortium.org/wp-content/uploads/2019/03/Gen-Z-Component-Authentication-Secured-infrastructure.pdf

² See DMTF Security Protocol and Data Model (SPDM) specification
Gen-Z data privacy + packet authentication = **maximum security protection**

Gen-Z uses authenticating encryption to provide:

- AES 256 encryption
- Packet tamper and anti-replay attack protection

Packet authenticating encryption may be selectively enabled

- Unique session per communicating peer
- Data plane, control plane, or both

Gen-Z encryption sessions will use DMTF SPDM session establishment (WIP)

- DMTF SPDM will be supported by multiple interconnects thus enhancing solution and infrastructure security

- See: https://www.dmtf.org/content/dmtf-releases-security-protocol-and-data-model-spdm-architecture-work-progress
Gen-Z specifies 16 Buffer operations that simplify data movement, buffer allocation, security, etc.

- No work queues, completion queues, etc. to manage—single buffer request / response
- One-, Two-, and Three-party data movement

Buffer operations can improve performance in multiple ways

- Three-party data movement eliminates need for all data to flow through a SoC
- Signaled buffer operations eliminate multi-thread / multi-node coordination overhead and complexity
- T10 DIF / PI acceleration and Secured Hash / Encryption acceleration
- Simplifies software / management, reduces control packet overheads, multipath aggregation, etc.
Enables primary media to be automatically copied to a secondary media.
- Works in a single enclosure or composable
- Primary and secondary media can be dedicated or shared by multiple compute systems
- Primary and secondary media can be mechanically co-located or discrete
 - Shared amortizes backup media costs across multiple primary media modules
- Emergency backup can be initiated by a processor once it has flushed its caches or if the primary media controller detects h/w failure
- Planned backup can be initiated by software to create dynamic data checkpoints
Secured Emergency/Planned Memory Backup

Direct-attached and shared / composable memory emergency and planned backup services

- Strong data integrity, cryptographically-secured hash, or encryption as moved to / from primary / secondary media
- Only primary media comprehends data protection applied—does not extend trust to secondary backup media
Summary

Gen-Z architecture designed from the start to support a fully-secured infrastructure

- Multiple hardware-enforced isolation mechanisms
- Component authentication and session management built on top of DMTF SPDM to simplify security infrastructure and management
- Strong privacy and packet tampering and anti-replay protection

Upcoming Gen-Z technology deliverables:

- New connector test fixture specifications
- New module-level optical connectivity through connector
- Gen-Z PHY 1.1 specification that supports:
 - PCIe PHY up to 32 GT/s
 - 802.3/OIF 50G PAM 4 (53.125 effective) with 2 ns FEC
- Compliance testing
Resources

UPCOMING EVENTS
Gen-Z demos at Super Computing 2019 (November)

View Gen-Z educational materials, membership details and links to related information at www.GenZConsortium.org

@GenZConsortium

Interested in MEMBERSHIP? Have QUESTIONS? EMAIL: admin@genzconsortium.org
THANK YOU