Improving Quality of Service for 3D NAND SSDs Using LDPC Correction

Rino Micheloni, Lorenzo Zuolo
Problem Statement

- TLC and QLC 3D NAND technologies require LDPC correction just to withstand a few thousand program/erase cycles.
- LDPC gives its best correction performance through soft decoding, but that method requires read oversampling, that is, reading the same memory location multiple times.
- Besides the fact that this approach obviously reduces read bandwidth, it also lowers the Quality of Service (QoS) of SSDs, which is the key parameter in high-value data environments.
- Even short periods in which SSDs are non-responsive are generally unacceptable in such situations.
QoS

Read

IF FAIL

Read + Error Recovery Flow

Read Oversampling (i.e. multiple NAND Reads)
- Re-Read + HD
- Soft Reads + SD

QoS

HD=Hard Decoding
SD=Soft Decoding
QoS dependencies

SSD Controller
HW
FW

ECC

NAND

Error Recovery Flow

QoS
Fully Integrated SSD-NAND Characterization Flow

Latency, Bandwidth, IOPS

SSD Simulator

channels
LDPC
WA
FTL
Flash IF
Workload
Host IF
NAND Characterization Setup

Real NAND Flash characterization with NVMe SSD controller:

• Endurance
• Retention (online/offline)
• RBER measurement
• Rack-scale testing
• TBs of data
LDPC Characterization Setup

FPGA implementation of Microchip ASIC Hard/Soft LDPC

- Real NAND Flash channel
- FER over BER computation
- Decoding performance calculation
- Rack-scale simulation
- Hundreds of billions of codewords per day
Full system level co-simulator for performance/QoS evaluation

SSD Simulator Architecture

Qemu

- USER APPLICATIONS
- WEB APPLICATIONS
- FILE SYSTEMS

Co-Simulation
Experimental Setup

• SSDExplorer is fed with data coming from characterization:
 • tRead, tProg, tErase, and RBER are measured from NAND
 • LDPC hard/soft decoding performance and FER are measured from a real LDPC implementation

• Simulated configuration:
 • 16 Channels
 • 8 die per channel
 • PCIe Gen3x4 (NVMe)
 • Real host workload (Qemu)
 • NAND Flash at End of Life
 • Error Recovery Flow: if Hard fails, then go to Soft (1 Bit)
Soft Read activation

• Soft Reads can be managed in 2 ways:
 • Soft Reads are initiated by the SSD Main Processor (FW management)
 • Soft Reads are initiated by the Flash Channel Processor (“local” management) -> in this case the SSD controller has to be properly designed
50%-50% 4kBytes Random Read/Write

![Chart showing comparison between SSD Main Processor and Flash Channel Processor QoS](chart.png)
100% 4kBytes Random Read
Conclusions

- TLC and QLC 3D NAND technologies require LDPC correction.
- LDPC gives its best correction performance through soft decoding, but that method requires read oversampling, thus impacting QoS.
- The impact of Soft Reads and Soft Decoding can be mitigated by a specific design of the SSD Controller.
- We have proven that QoS can significantly be improved if Soft Reads can be initiated by the Flash Channel Processor inside the SSD Controller.
Thank You

Come and visit us at booth #213
www.microchip.com