Designing SSD Storage Systems for Low Latency Without Large Outliers

Sebastien Jean, Phison Electronics
Imran Hirani, Everspin Technologies
Improving High Reliability Storage

• Advanced storage appliances use two key techniques to improve the reliability of a multi-drive array
 o Journaling (ex: Transaction logging, checksums, data logging)
 o Physical Redundancy (ex: RAID-6, Redundant Power)

• Journaling generally provides three levels of protection with increasingly slower throughput
 o **Writeback mode** – Only the metadata is journaled describing the transaction and filesystem structural changes. User data and metadata are written in parallel and can fall out of sync during a power failure.
 o **Ordered mode** – Forces the data to be written first, serializing the data and journal operations
 o **Journal mode** – Will write both the metadata and user data to the journal, then write the user data to the data drives
Improving High Reliability Storage

• Journal data is very short lived, but must be persistent
 o It has a significant impact on write amplification and is a major contributor to high SSD TBW requirements
 o This forces the use of high Over Provisioning (OP) or high cycling NAND which are both expensive
 o Moving the journal to dedicated redundant drives consumes slots, power and cooling

• Organizations that must use high reliability storage configurations pay a very high operational cost

• The most effective way of improving the performance of a fully journaling file system is to move the journal off the user data path onto a dedicated redundant storage solution
 o Journal size tends to be relatively small
 o Still consumes 2-5 slots depending on the type of redundancy that is needed
 o Placing multiple journals from different volume onto one drive-set splits the efficiency improvement and pushes out the latency on every volume in the new “meta set”
Improving High Reliability Storage

- Ideal configuration: a redundant high-speed side-band solution that does not require any additional drive slots
 - MRAM has very high write bandwidth and program cycles; perfect for data with low tenure like journals
 - Does not require an FTL, can be used like DRAM, naturally PFAIL capable
 - Very tight latency distribution that ensures minimal degradation in a RAID environment
 - Cost is much lower than high P/E NAND or high OP SSD and there is no additional slot overhead
Proof of Concept

- We set up a Linux server with EXT4 set to mode=journal (full journaling)
 - PS5012-DC SSD as RAID-6
 - PS5012-DC SSD as RAID-6 + PS5012 Journal
 - PS5012-DC SSD as RAID-6 + NVNitro MRAM Journal

- Enterprise deployments tend to be optimized for specific tasks
 - Transaction Workloads: 4-8K IO, short tenure data, 50/50 read/write
 - Data Workloads: 64-256K IO, 70/30 read/write

- **Experiment 1** – Transaction WL
 - FIO 3.15
 - Precondition drive with random write until steady-state
 - Measure Transaction Workload for 1 hour

- **Experiment 2** – Data WL
 - FIO 3.15
 - Precondition drive with random write until steady-state
 - Measure Data Workload for 1 hour
Proof of Concept

• The data for Experiment 1 & 2 were accidentally run in parallel
 o This resulted in a bimodal distribution (4-8K; 64-256K)
 o CPU loading was only 8% despite have 64 tasks
 o Storage write bandwidth was only pushed to 10%

• Initially this data appeared to be unusable
 o Upon further consideration we realized this represented lightly loaded virtualized servers
 o As the workload increased, these virtual machines would be moved to dedicated hardware
Study Results

• Assuming an organization requires RAID-6 with full journaling
 o Despite only using ~10% of the system resources
 o Moving the journal off the data drive increases the R/W IOPS 36%
 o Read 99.99% latency is reduced by 44%
 o Write 99.99% latency is reduced by 75% (E12DC) and 82% (MRAM)

• Higher system loading will amplify the differences between all three configuration
 o Moving the journal off the data media allows the NAND to be used for user IO
 o MRAM provides PFAIL and can be integrated into an SSD
 o No additional slots required each SSD has its own journal MRAM pool
 o Journal MRAM can also be configured as RAID

• Next steps
 1. Split workloads and increase system stress to 100%
 2. Add Flush/Sync operations and Move Data RAID bitmap to journal
 3. Produce detailed latency (99.9999%) and Write Amplification analysis
 4. Review power study (SSD Journal vs MRAM Journal)
“PUSHING BOUNDARIES”
YOUR PCIe GEN-4 SSD LEADER

VISIT US AT BOOTH #219!