Advanced Countermeasures: Integrating SSDs Into Cyber-Security Defense

Sebastien Jean, Phison Electronics
Greg Scasny, Cigent Technology
Cyber-security Landscape

- **What’s at risk**
 - Data can have sentimental value *(pictures)*
 - Data can be very personal *(medical records)*
 - Data can be very expensive to acquire *(DNA Sequencing)*
 - Data can be critical for the operation of a business or even a city

- **Problem**
 - Data Theft and Data Ransoming are a growing problem
 - Bypassing standard antivirus tools is relatively easy if you understand how binaries are structured
 - The days of quick attacks are over
 - Attackers are taking their time to study the network, find the most valuable data or do the most possible damage by destroying backups

- **Solution**
 - AI/ML cyber-security suite that is tightly integrated with the storage align the protection system with the threat landscape
Cyber-security Landscape

- June/2019 – Florida Ransomware Headlines
 - Lake City: Pays $460,000 in Ransom to Cyber attackers
 - Key Biscayne: Someone clicks link, again, giving ransomware
 - Riviera Beach: Agrees to pay ransomware hackers $600,000 to unlock its data

- Current methods used to combat cyber security threats include: People, Process, Technology
 - Despite constant training, people remain the weakest link, accounting for 43% of all the security breaches

- How can AI/ML help detect and stop cyberattacks beyond what is being done today?
 - The Florida Ransomware attacks represent an advanced attack known as a “triple threat”
 - What does this mean and how can we protect ourselves?
Getting into the network

- An unwitting victim receives a phishing email that usually contains a macro-enable office document
 - When “Enable Content” is pressed, a macro runs that spawns a command shell and downloads the “Emotet” trojan
 - Emotet was identified in 2014; it attempts to steal sensitive information
 - It has advanced polymorphic functionality that helps evade signature-based anti-malware products
 - It detects if it is in a VM/Sandbox and will remain dormant
 - Designed to spread to other computers on the network
 - US Department of Homeland Security concluded that Emotet is one of the most costly and destructive malwares, costing upward of $1M per incident to clean up

“IT all starts with a single user - click”
AI Detection & Prevention

• Reviewing attack vectors
 o Users are trained not to open attachments, but if the email appears to be internal, they assume it's safe
 o Office Macros are heavily used in corporate environments and while IT experts prefer to disable them, user backlash usually gets them re-enabled
 o Powershell is used in everything from auditing, account management, system hardening and configuration management

• These tools are entrenched, so why not use AI/ML to help detect unusual activity?
 o Attacks are typically structured as a chain, where one step allows the next step to continue
 o Breaking that chain will stop the attack
 o Machine Learning algorithms such as decision trees and nearest-neighbor type algorithms can detect deviations from baseline behavior
 o No need to search for specific file names or signatures
 o Enable maximum productivity by focusing on system activity that is outside the norm
Breaking Virus Scanner

• Polymorphic code or self-mutating sounds cool, but what does it mean?
 o The binary understands its own code structure
 o It can move sections around and self-edit, but still respects the rules of binary layout
 o Can be based on a valid executable that simply changes one of the branch calls to execute the attack function
 o Adds random symbols and instructions calls that are not actually accessed
 o SHA-256 hash will produce a substantially different signature even when only a few bytes are changed
 o Result is that the attacking exe passes the signature check
 o Though setting up this self-editing code is tedious, it is not that hard to do if you understand how compilers work

Basic Bin Layout

Defeating Virus Scanner

Polymorphic == Self-edits to Bin

Flash Memory Summit 2019
Santa Clara, CA
AI Detection & Prevention

- The AI/ML is trained to look for abnormal execution patterns
 - Normal usage of system binaries
 - Normal use (or non-use) of system commands such as “net”, “taskkill”, “psexec”, “vssadmin”, etc…
 - Normal lateral network communications
 - Normal access patterns as the encryption and removal of many files at once from storage

- Layered approach
 - Attackers use many different tools together to attack a system
 - The solution must take a similar approach
 - Sensors come with a pre-trained baseline and adapt based on the environment and specific user
 - Here are a few examples of Input Sensors:
Training AI/ML Examples

- The K-Nearest Neighbor (KNN) algorithm executes very quickly and has good predictive power
 - In this example we have a set of circles and squares representing known items.
 - The axis represent sensor inputs, though there is no reason to limit to only two inputs (it's just easier to draw)
 - The objective is to classify the triangle based on how many (K) neighbors it has

- A Neural Network (NN) can be trained dynamically
 - In this example we look at keyboard typing cadence and character usage
 - Input Network-1 is trained on character frequency
 - Input Network-2 is trained on delay from last keystroke
 - Hidden Layers add more complexity to the categorization
 - Output Node balances the input to make a determination
A decision tree looks a lot like a flow chart

- The training is a lot simpler as the data it works with does not need to be process or normalized
- The Decision Tree works together with the KNN and NN based categorization engines to classify activity and then make a decision
- The categories and issues are automatically identified by the learning algorithm based on the data collected
- The objective with each split is to obtain many items of a specific class in that category
- Apply regression function with a simple square of the error to prune out bad branches
- Stop when minimum number of training issues assigned to each class is below a set target
- The final classification is submitted to the security policy set up by the end-user or security officer
Sensor: SSD Storage

- The SSD can become another sensor input into the AI/ML engine
 - Based TCG Opal Self-Encrypting Drive (SED)
 - The SSD is divided into TCG Opal Ranges
 - The SSD maintains logs for each TCG Opal Ranges that can be analyzed by the AI/ML engine

- Secure SSD Sensor
 - Careful Hardware and Firmware design ensures no degradation in performance
 - Projected impact of logging on TBW is ~24B / 4K (0.1%)
 - No meaningful impact on drive lifespan
 - No significant degradation in performance
Key Takeaway

1. Data Theft and Data Ransoming are a growing problem
2. Attackers take their time to learn the network: Maximize Theft & Damage
3. Attackers can read white papers too, they will adopt AI as well
4. The only thing that beats AI is a better AI, simple rule-based logic is obsolete
5. Applying adaptive AI/ML gives a realistic chance of breaking the attack chain
6. Pushing the detection and response further down the data stack (all the way to the storage device) is a force multiplier for AI/ML defense
7. AI/ML cyber-security + tightly integrated storage = solid protection
“PUSHING BOUNDARIES”

YOUR PCIe GEN-4 SSD LEADER

VISIT US AT BOOTH #219!