Overcoming Reductions in NAND Endurance Ratings

JB Baker
Sr Director Product Management

ScaleFlux
Framing the Endurance Challenge

Innovations in SSD Endurance beyond LDPC
 • Transparent / Drive Integration
 • Storage Driver Integration
 • Application Integration
 • Future
NAND & SSDs: Better, Faster, Cheaper?

Cheaper
- Enterprise SSD $/GB
 - 1/10th the price and falling

Faster
- SSD Throughput (MB/s)
 - 10x throughput with 20x soon

Better
- NAND Endurance (k P/E)
 - 1/20th the life @ TLC
 - 1/100th the life @ QLC

*Source: Forward Insights, SSD Insights Q1’19
The Endurance Challenge

Total Bytes Written (TBW) = Raw Capacity * Program-Erase Cycles

Write Amplification

NAND endurance decline outpaces Capacity Growth

Need Write Amplification Innovations to Contribute!

*Source: Forward Insights, SSD Insights Q1'19
Agenda

- Framing the Endurance Challenge
- Innovations in SSD Endurance beyond LDPC
 - Transparent / Drive Integration
 - Storage Driver Integration
 - Application Integration
 - Future
In-line Compression/Decompression

Transparent / Drive Integration

- **What it is:**
 - Encodes the data to reduce the physical space it consumes
 - Runs a compression algorithm on data as it is written to Flash
 - Decompresses data upon read

- **What benefits it can deliver**
 - Increased *effective* overprovisioning (OP)
 - Significant reduction in Write Amp → Increased TBW
 - Improved IOPs and Latency → Reads & Writes
 - Additional User Space

- **Limitations / requirements to derive the benefit**
 - Data compressibility varies… but a little goes a long way!!
In-line Compression/Decompression
Transparent / Drive Integration

<table>
<thead>
<tr>
<th>Raw Capacity</th>
<th>User Capacity</th>
<th>Rated OP %</th>
<th>Effective OP% with compression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.2:1</td>
</tr>
<tr>
<td>4TB</td>
<td>3.2TB</td>
<td>28%</td>
<td>54%</td>
</tr>
<tr>
<td>3.84TB</td>
<td>3.2TB</td>
<td>7%</td>
<td>60%</td>
</tr>
</tbody>
</table>

- Minimal Compression lets “7% OP” act like “28% OP” → Similar endurance & performance with 20% more user space!
- Moderate Compression yields ~100% Effective OP → Enables Write Amp close to 1... doubling or more the TBW!!

Data Compressibility Examples:
- <1.2:1 – Images, Video, Encrypted
- 1.2:1 – Binaries, DLL, EXE
- 2:1 – XML
- >2:1 – HTML, Logs, Database

See Thomas McCormick’s preso from FMS 2016 for detailed WA vs OP: [link](https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2016/20160809_FC12_%20McCormick.pdf)
Atomic Write

Storage Driver Integration

What it is:
- Atomic write operations guarantee that either “all specified blocks are written” or “no blocks are written”

What benefits it can deliver:
- Turn off double-write buffer (DWB) for databases
- Cut writes to NAND by 50% → 2x SSD Endurance
- Cut writes per transaction by 50% → 2x QPS*

Limitations / requirements to derive the benefit:
- Filesystem must guarantee that write requests occupy consecutive LBAs
 - E.g. EXT4/bigalloc used so that MySQL/InnoDB data unit is in one 16kB page

*SysBench Write-Only benchmarks
Atomic Write
Storage Driver Integration

- Database Table update = 2 Writes
 - 1st write to DWB
 - 2nd write to Database Table
 - Good data is recovered from DWB in case of crash

- Database Table update = 1 Write
 - Data guaranteed to be updated completely, or not at all
 - 50% Less data written to NAND
 - 50% Fewer write I/Os
Streams
Storage Driver Integration

What it is:
- The Streams Directive enables the host to indicate (i.e., by using the stream identifier) to the controller that the specified logical blocks in a write command are part of one group of associated data. This information may be used by the controller to store related data in associated locations or for other performance enhancements.*

What benefits it can deliver
- Performance & Endurance improvements
 - Separates Read/Write queues ✓
 - Set unique OP levels for each Stream ✓
- Avoid Garbage Collection for long-term data → Reduce WA ✓
 - Manage free/erase block pools separately for each Stream

Limitations / requirements to derive the benefit
- Host awareness of the Streams
- Benefit varies widely depending on the size & update frequency of the Streams relative to each other

*NVM-Express™ Revision 1.4, Sect 9.3
Streams
Storage Driver Integration

- **Multi-Stream**
 - Like data logically stored together
 - *Isolate GC & I/O traffic for each data type*

- **Single Stream**
 - All data jumbled together
 - No logical separation for GC, OP or Read/Write

Database Logs
- Small Random
- Re-written Often

Files
- Large Sequential
- Long Term Storage

Analytic Data
- Medium Sequential & Random
- Temporary Storage

Small Random
- Re-written Often
Group Garbage Collection
Application Integration

- **What it is**
 - Consolidation of Garbage Collection activities between the application and the SSD

- **What benefits it can deliver**
 - Eliminates redundant GC \rightarrow Reduction in WA
 - Higher throughput & less latency variability
 - Zero-OP SSD \rightarrow Adds 7%, 28%, or more to usable GB

- **Limitations / requirements to derive the benefit**
 - File System or Application must initiate GC, compaction or defrag
 - E.g. RocksDB, ZFS, Aerospike
 - FS or Application changes to communicate with the SSD Firmware
 - SSD Firmware capable of informing FS/App of the physical location
 - E.g. Open Channel
Group Garbage Collection
Application Integration

Baseline
Separate Defrag & GC

Av1 106 KOPS Steady State
166M 4K Records
User Capacity 1600GB

0% OP Flash Storage
Group Defrag & GC

Avg 115 KOPS Steady State (+8.5%)
215M 4K Records (+30%)
User Capacity 2048GB (+28%)

WA Reduction improves:
Endurance, Capacity, Consistency, Performance

POC Results with CSS 1000
Modifications to Aerospike group defragment

448GB OP
1600GB User

2048 GB
Physical Flash

2048 GB
Physical Flash

2048GB User
Future...

- **Global FTL**
 - Manage the NAND across SSDs as a single pool
 - Cut RAID overhead by 50% → single level vs Host & In-Drive
 - Global OP / wear leveling
 - Efficient support for large numbers of sets

- **Deduplication**
 - Replace multiple copies of data—at variable levels of granularity—with references to a shared copy in order to save storage space and/or bandwidth
 - More effective with larger data sets

- **Larger Compression Blocks**
 - Yield higher compression ratios
 - Tradeoff with Read performance
Thank You

JB Baker, Sr Dir Product Management
ScaleFlux
Jb.baker@scaleflux.com