Persistent Memories: Markets and Applications 2019

Mark Webb
MKW Ventures Consulting, LLC
mark@mkwventures.com
Contents

• Persistent Memory Definitions
• Applications and what is shipping today
• Technologies and memory configurations
• Revenue projections and forecasts
A Persistent Memory Definition (Updated)

- It’s persistent … No need to worry about loss
- It’s accessed like memory on memory bus
 - “Byte addressable” …. Not block mode
 - Anything can be virtual memory… but this is less interesting
- Speed: system less than 1us latency (I can do storage at 6-10us)
 - Raw memory read latency on order of 100ns
- Endurance “good enough” to meet needs required by application
 - ALL NVM have endurance issues. NONE can be cycled 10^8 times in real world
- Used for data being worked on and addressed by programs. Not primarily used as cold or warm storage
How is PM Accessed

Interesting:
• Like DRAM: DDR bus. Parallel memory slots on server/PC board (Today). NVDIMM-N, NVDIMM-P or non-standard DDR4
• On New Bus: GenZ, OpenCAPI, CCIX, CXL
• Intel Optane PM DIMMS App Direct mode.

Less Interesting:
• Intel Optane Persistent Memory in memory mode (Cached, not PM)
• Through NVMe/Storage bus: This is available today working with different memories but it is not my focus
• Block access (like an SSD on DRAM Bus)
Historical Memory Storage vs PM

Increasing Speed/Cost

CPU
DRAM
SSD
HDD

Non-Volatile

Memory
Storage

Increasing Capacity

CPU
DRAM
PM
SSD
HDD

Non-Volatile

Memory
Storage

Mark Webb, MKW Ventures
Persistent Memory Applications
… It’s Here Today

- Server DIMMS/Main Memory for systems shipping NOW
- RAM requirements where max speed is needed and memory cannot be lost due to outage (NVDIMM-N)
- Log file, journaling, networks, fast restart requirements
- Applications with long processing times, Modeling
- Where quick recovery/reboot of server needed
- Financial transaction processing
- Still relatively low volume and penetration (<5% of servers)
 - Goal is 50% of servers by 2024
What’s Shipping Today?

- NVDIMM-N is “classic” version of persistent memory DIMM
 - Addressed just like DRAM in a DIMM
 - Backed to NAND periodically or when power lost
 - Typical NVDIMM is 16G DRAM plus 32G of SLC NAND with control and capacitor/battery
 - Appears as 16GB of DRAM at DRAM speed
 - Downside: >2x the cost of DRAM. Limited to DRAM Density
- NEW: Intel Optane Memory (Finally!!)
 - App direct mode is the “classic” PM we want! Up to 512GB DIMMS
 - Memory mode not persistent so not focus, Same with block modes
Intel DC Persistent Memory

• After many launches, it is finally available.
• 128, 256, 512GByte DIMMS
• System Speed is listed at 350ns Read Latency, Write is “higher”
 • Slower than DRAM, much faster than NAND
• No cycling limit in applications (a nice surprise)
• Ability to support TBs of addressable memory… and its persistent
• Requires Cascade Lake CPU, but is supported on majority of SKUs.
• MSRP* price is quite high… similar or even higher than DRAM
 • Cost is actually 60% of the cost of DRAM when in full productions (See presentation)
• TBs of addressable memory that meets our definition of PM shipping to people who want it. Big change from 2018
High Density DIMM Applications

• Databases where loading and swapping portions is not efficient.
• Anything where faster loading, faster analysis provides monetary return to pay for it
• Examples:
 • Financial database/transaction processing ($/mS metrics available)
 • AI: Low latency needed for fast look up and processing
 • VMs that are currently memory limited (10x more VMs/Server)
 • Video/entertainment/Animation (Large dataset). In Memory processing
 • Log files, In memory commit
 • Caching for Storage…. Faster and limits wearout of SSD.
• Simplified: All applications that ran PCIe/NVMe 3 years ago.
Persistent Memory Applications (MORE)

CE/Mobile Devices (Not NVDIMMS…. Fast NVM)

• Smaller density replacing Capacitor/battery backed DRAM, replacing SRAM/DRAM/Flash. CE device optimization

• For cost-speed reasons, these applications often optimize NAND and DRAM and HDD in gaming/CE systems

• Potential to create a memory system that is fast enough and allows less chips, faster overall speed, better reliability.

• For Many apps, lower density is OK enabling more media (memory types) options
 • 16M SRAM+1G DRAM+8G NAND could use MRAM for aspects.
 • 2G DRAM+16G NAND could go to ReRAM/PCM-3D Xpoint

Mark Webb, MKW Ventures
Memory Types/Media

<table>
<thead>
<tr>
<th></th>
<th>Latency</th>
<th>Density</th>
<th>Cost</th>
<th>HVM ready</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAM</td>
<td>*****</td>
<td>***</td>
<td>***</td>
<td>*****</td>
</tr>
<tr>
<td>NAND</td>
<td>*</td>
<td>*****</td>
<td>*****</td>
<td>*****</td>
</tr>
<tr>
<td>MRAM</td>
<td>*****</td>
<td>*</td>
<td>*</td>
<td>***</td>
</tr>
<tr>
<td>3DXP</td>
<td>***</td>
<td>*****</td>
<td>****</td>
<td>****</td>
</tr>
<tr>
<td>ReRAM</td>
<td>***</td>
<td>*****</td>
<td>****</td>
<td>**</td>
</tr>
<tr>
<td>Other</td>
<td>***</td>
<td>**</td>
<td>**</td>
<td>*</td>
</tr>
</tbody>
</table>

Notes: NOR/SRAM and low density Not in Included (Small), Low density FeRAM not included
Coming Persistent Memory/SCM Technologies

- **NVDIMM-N** meets the specs but is very expensive and density <= DRAM
 - “classic” PM, 16GB-64GB, 2-3x the cost of pure DRAM
 - Shipping today, Market is estimated at $750M and growing 30-50% CAGR
- **PCM/Optane Persistent Memory Media** (Don’t call it 3D Xpoint)
 - We expect multiple competitors using crosspoint PCM technology
- **ZNAND/Fast NAND**: slower than DRAM, cycling limitations (good for SSDs)
- **MRAM**: Much more expensive than DRAM (But close on speed)
- **ReRAM**: Slower than DRAM, Cycling limitations (much like Optane)
- Nothing is replacing DRAM. Its combined with DRAM or used in applications where being 5-7x slower than DRAM is OK
2019 Challenges

• While we now have Optane and NVDIMM-N, We have challenges to reach dream of Persistent Memory
 • Persistent Memory integration is hard. Delays in Optane DIMMs show challenges when compute system is controlled by Chipset owner.
 • New memory, slower RAM, balancing PM and DRAM
 • NVDIMM-P will hopefully do this on broader scale which is even more difficult. Implementation in not soon.
 • New memories show promise in low volume and samples but have yet to ramp (MRAM, ReRAM, Other PCM)
 • Other memories in research are 5+ years from revenue
DRAM/NVM Combinations

• Coming solutions are some DRAM merged with lots of NVM.
 • Lower cost, near DRAM performance, managed endurance

• 3D-Xpoint persistent memory combines DRAM DIMMs and 3D Xpoint DIMMs with processor/memory controller managing data

• Z-NAND and solutions from All NAND and NVDIMM vendors will use similar architecture
 • Cheaper than DRAM, Lots of memory, Managed endurance

• NVDIMM-P SHOULD Provide standard to allow all of these.
 • Further delay will extend lead of Intel/Micron in technology

• Combination of memories is hard but provides tradeoffs to prevent a niche market
Predictions for Market

• NVDIMM-N is established and very useful for high speed, low density (<64GB) DIMM applications at higher cost.
 • Bit growth is strong, revenue growth dependent on pricing
• Long delayed Intel Optane PM is shipping today with widespread Intel Support. Soon to be a Billion dollar market
• Last Years Comment: “If we are having “what’s possible” discussions at end of 2019, Market will be much, much lower than middle revenue”
 • Thanks to NVDIMM-N and Intel, we are not having this discussion!!
Persistent Memory

Revenue Growth “Guess-timate”

<table>
<thead>
<tr>
<th>Year</th>
<th>Revenue Middle</th>
<th>Revenue High</th>
<th>Requirements to meet Middle</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>$1.6B</td>
<td>2.4B</td>
<td>Optane, NVDIMM must takeoff ASAP</td>
</tr>
<tr>
<td>2022</td>
<td>$3.4B</td>
<td>$5.5B</td>
<td>Persistent memory multiple areas. NVDIMM-P Shipping, Multiple bus options evaluated</td>
</tr>
<tr>
<td>2024</td>
<td>$5B</td>
<td>$7B</td>
<td>Multiple new memories allow utilization in mobile, server, PCs</td>
</tr>
</tbody>
</table>

NOTES:
- Numbers down 15-20% from 2018 due to Optane PM delays and NVDIMM-P delays
- NVDIMM+SCM/NVRAM standalone memory only. Virtual memory on storage bus not included
- NVDIMM could be DRAM+NAND, Fast NAND, SCM
- Optane and NVDIMM-N dominate. “other options” are >500M 2024
Mark’s Summary

- Persistent memory is here in NVDIMM-N, Optane DIMMS
- To grow, we need to be cost effective.
 - DRAM replacement by expensive tech won’t work broadly
 - Memory that is too slow won’t work broadly
 - Neither DRAM nor NAND are getting replaced in next 5 years
- DRAM + NVM will be the PM future (like NVDIMM-P)
 - Includes Optane Persistent Memory which requires DRAM
- Revenue could grow 35% CAGR if technologies deliver
 - New bus, NVDIMM-P or other alternate to Intel, NVDIMM cost reduction