Standardizing Zones Across the Storage Ecosystem

Sponsored by NVM Express™ organization, the owner of NVMe™, NVMe-oF™ and NVMe-MI™ standards
Speaker

Dave Landsman
Director of Industry Standards
Beyond Random IO – New Use Cases for NVMe

• Over past couple years, industry debate on Open Channel vs. “Traditional” SSDs
• Debate is really about the emergence of two new SSD use case categories

IO Isolation
• Focus on Latency/QoS
• Host control over SSD physical topology

Write Amp Reduction
• Focus on Capacity/Cost
• Host/SSD collaboration on GC and Wear Leveling

New: Zoned Namespaces
LBA space divided into fixed size ranges

- **NVMe 1.4: IO Determinism**
 - NVM Sets & Endurance Groups
 - Predictable Latency Mode

- **New: Endurance Group Mgmt**
 - Enable standard provisioning of topology isolation use cases

Reset write pointer commands rewind the write pointer
Write commands advance write pointer
Zoned Block Storage already in HDDs

Take advantage of SMR capacity growth

• SMR (Shingled Magnetic Recording)
 – Enables areal density growth
 – Causes magnetic media to act like flash
 • Data must be erased to be re-written

• Zoned Block access for HDDs
 – Drive formatted into fixed sized regions
 – Host/Device enforce sequential writes in LBA space to mitigate RMW effects of SMR
 – Zoned Block interface standardized in T13/T10
 • Zoned ATA Commands (ZAC): SATA
 • Zoned Block Commands (ZBC): SAS
Why Zoned Block Storage for SSDs

Take advantage of TLC/QLC capacity growth

• TLC & QLC increases capacity but at cost of
 – Less endurance
 – Lower performance
 – More DRAM to map higher capacity

• Zoned Block access for SSDs
 – SSDs are intrinsic Zoned devices due to flash characteristics
 – Host/SSD cooperate (distributed FTL) using sequential access
 – No complex topology provisioning; Zones are logical
 – Reduces write amplification and internal data movement

• Result
 – Reduced wear
 – Improved latency outliers and throughput
 – Reduced DRAM in SSD (smaller L2P)
 – Reduced drive Over Provisioning
Why Zoned Block Storage for SSDs?
Synergy w/ ZAC/ZBC software ecosystem

- SW ecosystem optimized at multiple levels
- Foundation is the Zoned Block Device.
- Different optimization paths
 - App -> POSIX File -> Unmodified FS -> dm-zoned -> ZBD
 - App -> POSIX File -> Modified FS -> ZBD
 - FS knows which LBAs in which file
 - Modified App -> ZBD
 - No file system; app knows most about data; e.g., may use zones as containers for objects
- We are adding changes for ZNS
Zoned Namespaces TP

Ongoing in the NVMe™ working group

• Inherits NVM Command Set

• Namespace divided into fixed sized Zones
 – Sequential Write Required is only zone type supported for now

• Aligned to host-managed ZAC/ZBC model, with some SSD optimizations
 – Zone Capacity
 – Zone Append
Zoned Namespaces TP

Zone Capacity

• ZNS model similar to ZAC/ZBC
 – States: Empty, Full, Implicit Open, Explicit Open, Closed, Read Only, Offline
 – State Changes: Write, Zone Management Command (Open, Close, Finish, Reset), Device Resets

• Zone Size vs. Zone Capacity (NEW)
 – Zone Size is fixed
 – Zone Capacity is variable
Zoned Namespaces TP

Zone Append

• ZAC/ZBC requires strict write ordering
 – Limits write performance, increases host overhead

• Low scalability with multiple writers to a zone
 – One writer per zone -> Good performance
 – Multiple writers per zone -> Lock contention

• Performance improves somewhat by writing to multiple Zones

• With Zone Append, we scale
 – Append data to a zone with implicit write pointer
 – Drive returns LBA where data was written in zone
Zoned Namespaces TP

How does Zone Append work?

Zone Write Example
Queue Depth = 1

- 4K Write$_0$
- 8K Write$_1$
- 16K Write$_2$

Zone Append Example
Queue Depth = 3

- 4K Write$_0$
- 8K Write$_1$
- 16K Write$_2$

• Host serializes I/O, forces low queue depth
• Insignificant lock contention when using HDDs
• Significant lock contention when using SSDs

• No host serialization; higher queue depth
• Scalable for HDDs and SSDs
Summary – Zoned Namespaces

• Standardizes interface for key evolving SSD use case
 – Sequential-write centric workloads
 – Host/SSD cooperate on GC and WL

• Enables lower cost solutions
 – Reduced wear
 – Reduces SSD DRAM
 – Reduced overprovisioning

• SW model synergy w/ SMR HDD ecosystem

• Specification nearing completion in NVMe™ WG
Questions?
BACKUP
RocksDB and Zoned Block Devices

- Embeddable key-value persistent store where keys and values are arbitrary byte streams.
- Optimized for fast storage, many CPU cores and low latency
- Based on Log-Structured Merge (LSM) Tree data structure
- The LSM structure aligns with Zones, and enables significant optimizations
- Integrates with MySQL databases (MyRocks)
- Patches are in progress
Ceph and Zoned Block Devices

Zettabyte Infrastructure

• Distributed File-System providing object, block and file-level storage.
• Enable Ceph to utilize Zoned Block Devices
• Ceph Bluestore removes the local file system from the equation
 – BlueFS backend writes data directly to the block device and can handle the sequential constraints
 – RocksDB uses LSM-trees that naturally generate no/few random updates and can easily be stored on ZBDs as well
• Zones or group of zones can map to natural failure domains that may be smaller than the whole device
 – Mapping OSDs to such failure domains would naturally ensure that recovery from failure would involve less network utilization and fewer I/Os
Zoned Namespaces TP

Attributes: Zone Excursions & Variable Capacity

• For NVMe™ devices that implement the Zoned Command Set, there is optional support for:
 – Variable Capacity
 • The completion of Reset Zone command may result in a notification that zone capacity has changed
 – Zone Excursions
 • The device can transition a zone to Full before writes reaches the Zone Capacity. Host will receive an AEN and write failure if writing after the transition

• If device implements, the host shall implement as well
 – Incoherent state model if not – Software should be specifically be written to know that zone capacity can change, or writes may suddenly fail