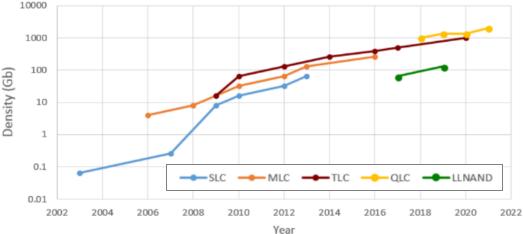


NAND Flash Media Management Algorithms

Roman Pletka IBM Research – Zurich Research Laboratory

- Background
 - NAND Flash Scaling Trends
- ECC
 - Hard and Soft Decision Decoding
- Read Voltage Calibration
- Flash management
 - Garbage collection
 - Wear leveling
- Protection against media failures
- Compression
- Summary



NAND Flash density trends

- Flash density will continuously increase by:
 - layer-count scaling beyond 200 layers (2020-2023+)
 - lithography shrinking (2022+)
 - \Rightarrow no need for EUV for 7+ years in flash
- Significant 3D-NAND process, architecture, and cell materials innovations needed for continued scaling beyond 200 layers (yield, cost)

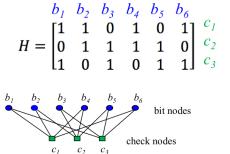
NAND Flash Density Growth trend

Source: J. Yoon, IBM, FMS2018

NAND Flash impairments

Impairment	Effect	Mitigation
Program/Erase cycling	Widens and shifts voltage distributions	ECC, read voltage calibration
Retention	Charge loss causing voltage shifting and widening	ECC, read voltage calibration, static wear leveling
Read disturb	Cause slight programming of unselected word-lines	ECC, read voltage calibration
Page program/read vs block erase operations	Requires garbage collection of blocks to reclaim space causing write amplification	Indirection table from logical to physical addresses, dynamic wear leveling, health binning
Media defects	Page, block, plane, or die failures	ECC, variable block stripes with parity, cooperative error recovery with RAID controller
Flash Memory Summit 2019		

ECC overview



BCH codes

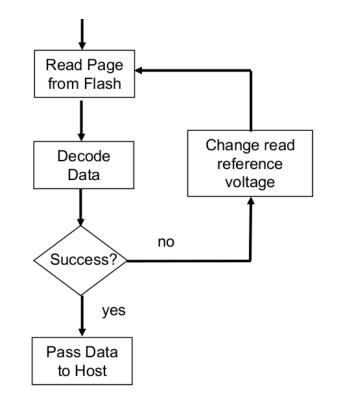
- BCH codes typically support harddecision decoding only
- Conventional controllers use BCH codes with 40 bit error correction over 1 KB code words
- Today, more advanced BCH-based codes are typically used with larger code word sizes (e.g., TPC, ...)
- Error recovery by read retry with different read voltages

LDPC codes

- Defined by a sparse (low density) parity check matrix H
- Are represented with a bi-partite graph

- Support hard and soft decision decoding
- Soft decision decoding requires additional soft information from additional reads

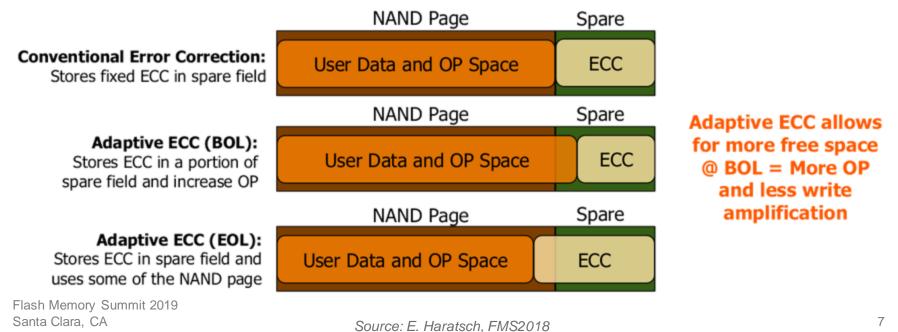
Any ECC code benefits from optimized read threshold voltages!



Read retry algorithm

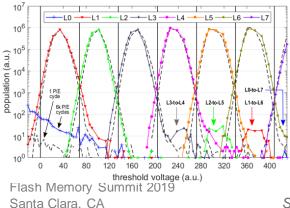
- Default read reference voltage optimized for typical condition only
- Read retry algorithm cycles through several individual read decoding steps
- Retry steps use read reference voltages optimized for program/erase cycling, retention, read disturb, etc.

⇒ A controller design should reduce read retry operations by pro-actively calibrating blocks

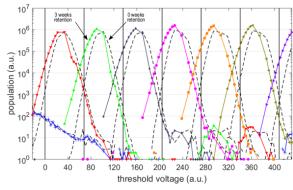


Adaptive code rates

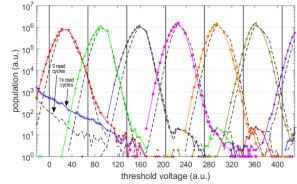
- Beginning of Life: use less ECC to increase overprovisioning
- End of life: increase ECC to maintain reliability


Effects on read voltage distributions

Example read voltage distribution effects in 3D TLC NAND Flash:


P/E cycling

- 1 vs 6k P/E cycles
- widens tails of distributions,
- presence of 2-step program effects: L0-to-L7

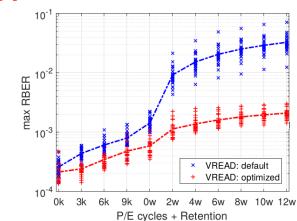

Retention

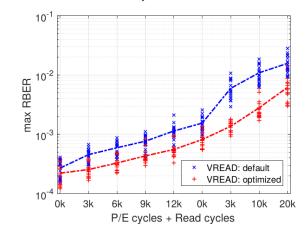
- 6k P/E cycles + 0 vs 3 week retention
- negative shift and increasing left tails

Read disturb

- 9k P/E cycles + 0 vs 1k rd cycl.
- Iower levels wider
- moderate negative shift due to short term retention

Source: N. Papandreou et al., IRPS 2019

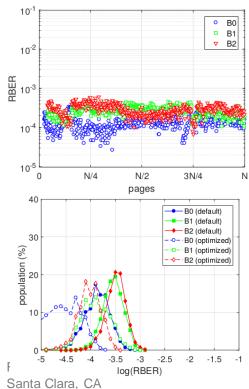

Read voltage calibration

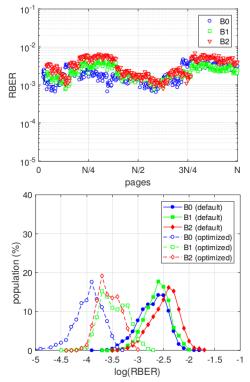


- Read voltage calibration:
 - Requires special access modes to Flash.
 - Extensive characterization is required to determine behavior of read voltage levels under different conditions.
 - Read voltage levels depend on:
 - Number of P/E cycles
 - Number of reads a page has seen since programmed
 - Retention time
 - Individual block/layer/page characteristics
- Block calibration determines optimal read voltage levels continuously in the background. Benefits are:
 - ~3x more endurance
 - Significant reduction of read retry operations
 - No impact on host read and write operations

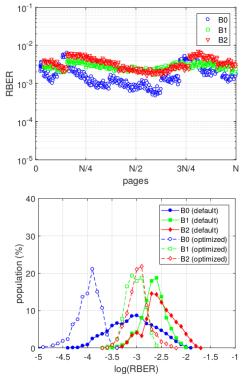
Flash Memory Summit 2019 Santa Clara, CA

Source: N. Papandreou et al., IRPS 2019




RBER characteristics and page type

9k P/E cycles



9k P/E cycles + 4 week retention

Source: N. Papandreou et al., IRPS 2019

9k P/E cycles + 10k read cycles

The Flash program-erase cycle Flash Memory Summit **Block selected for garbage** No in-place updates collection X Overwrites are placed to new Relocate still valid data to locations thereby invalidating new block, update LPT original location **New Block LPT Table** Fully LBA PBA programmed block Data Placement **Block erase** Write pages, maintain Erased Prepares block for data Block logical-to-physical mapping Partially placement Programmed table (LPT) Block Flash Memory Summit 2019 Santa Clara, CA

Traditional wear leveling (WL)

_		_		
	_			1
			_	
			-	
			w	
			*	

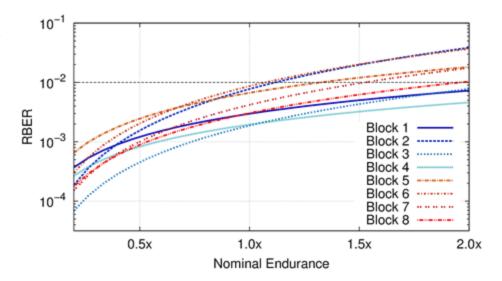
Dynamic WL

Balance P/E cycles across blocks upon overwrites and relocations. Typically uses the least worn available block to place new data.

Static WL

Identifies the least worn blocks holding static data in the background. Still valid data is relocated to another block causing an increase in write amplification.

P/E Cycle-based WL


Balances wear of blocks based on their program-erase cycle count only.

- Significant differences in the RBER over time can be observed in blocks within the same device:
 - Some blocks have almost twice the endurance of others
 - Low RBER at early life does not indicate a good block, and an early high RBER not a weak one

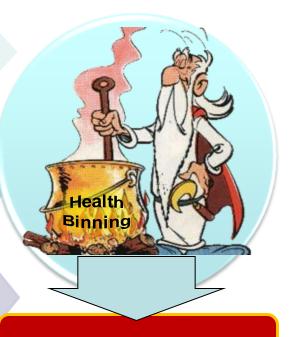
RBER of different flash blocks in the same device as a function of P/E cycles

From WL to Health Binning

		-	
		-	
_		_	
	_		
_			

Dynamic WL

Balance P/E cycles across blocks upon overwrites and relocations. Typically uses the least worn available block to place new data

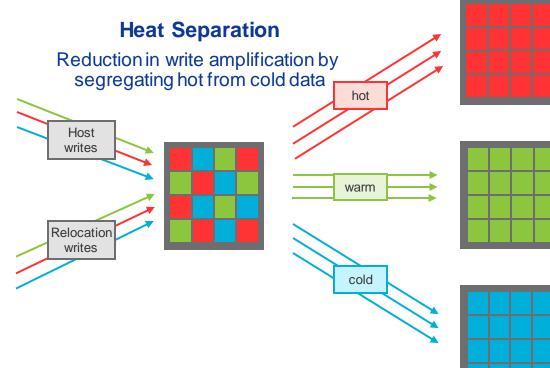

Static WL

Identifies the least worn blocks holding static data in the background. Still valid data is relocated to another block causing an increase in write amplification.

P/E Cycle-based WL

Balances wear of blocks based on their program-erase cycle count only.

- Introduce data placement with stream segregation
- Use better blocks for hotter data
- Reduce Static WL to address retention and read disturb only
- Relocations instead of block
 swapping
- Background grading of blocks based on RBER
- RBER estimation based on ECC feedback



Endurance gains of up to 80%!

Combining heat separation with health binning

_		_		
	_			1
			_	
			-	
			w	
			7	
 	- ·	_		

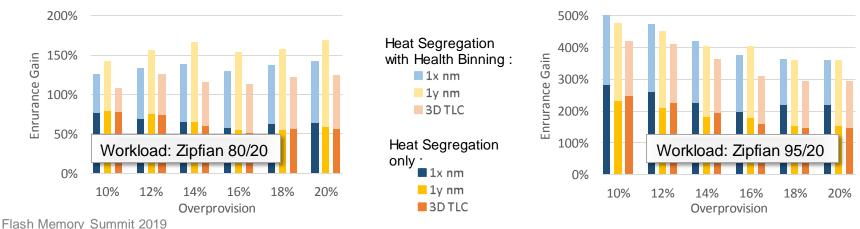
Healthiest Blocks

Health Binning

Determine block health during background operations.

- Hottest data is written to healthiest blocks,
- cold data to less healthy block

Least Healthy Blocks

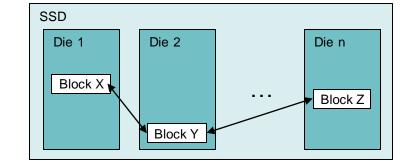


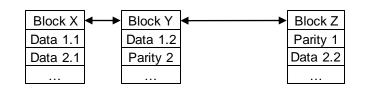
Endurance gains

Endurance gains from write separation and health binning:

- Substantially higher gains for more skewed workloads thanks to reduced GC overhead
- Endurance gains are increasingly dominated by Health Binning with higher over-provisioning as relative gains from write amplification reduction decreases at the same time
- Smaller feature size have higher gains from health binning due to increase in the block variability

Santa Clara, CA

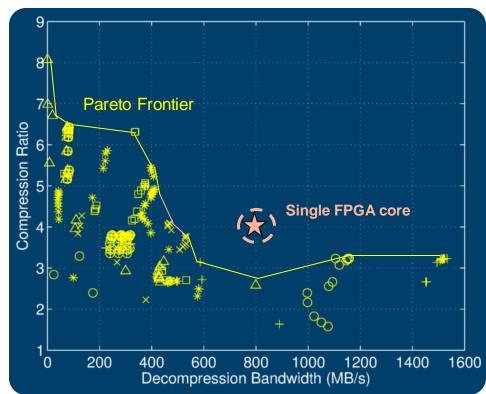



Santa Clara, CA

Media failures

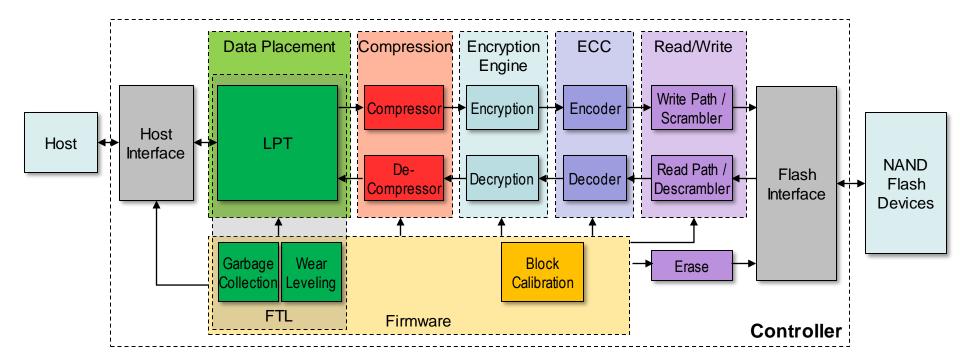
- Pages, blocks, planes or the whole die can fail
- ECC cannot recover data from such catastrophic failures
- Need RAID-like protection inside SSD
 - Write data across multiple dies with additional protection
 - Corrects full page, block or die failures when ECC fails
- RAID stripes can be of variable size

Multi-level error correction


Frequency of Occurrence Normal 1. Hard decision ECC decoding (every page read) 2. Progressively apply stronger decoding methods such as Occasional soft-decision decoding and signal processing, or • use read retry methods • Seldom 3. Read voltage calibration to reduce effects of P/E cycling, retention, read disturb, etc Rare 4. RAID-like parity among different dies Cooperative system-level RAID and SSD error recovery 5. Very rare schemes

Additional error detection using CRC on logical data and page headers

Hardware compression


Hardware compression for IBM FlashSystem™

- Compression reduces internal write amplification
- Low power FPGA implementation
- Multiple compression engines per FPGA core
- Each flash card has its own compression engines
- System can deliver inline compression @ > 1M IOPs
- Built into data path as a streaming engine (no store and forward)
- Based on Lempel-Ziv coding combined with pseudodynamic Huffman codes and a 4KiB history buffer

SSD controller block diagram

TEM		

- Complexity of SSD controllers keeps increasing with every NAND flash generation
- 3D NAND flash relies on strong ECC algorithms, especially with increasing number of bits per cell.
- Latest memory technology demands intelligent NAND management features for data placement, garbage collection, wear leveling, and block calibration
- Modern controllers use multiple levels of error corrections including strong ECCs, signal processing, read voltage calibration, RAID-like parity schemes

Thank You !

