

NAND Flash Basics & Error Characteristics

Oliver Hambrey Siglead Europe – Coventry, UK

- slides based on, adapted from and added to previous FMS pre-conference seminars
 - Roman Pletka: IBM Research Zurich
 - Tom Parnell: IBM Research Zurich

- NAND flash basics
 - floating gate transistor
 - read/program/erase mechanisms
 - organization
 - multilevel cell NAND flash
- Error Characteristics
 - program/erase stress
 - data retention
 - read disturb

Flash Memory Summit 2019 Flash Memory Summit 2019 Flash Memory Summit 2019

PART 1: NAND Flash Basics

The Floating Gate Transistor (Cell)

• fundamental building block of NAND flash memories

- **readability:** different conductive properties exhibited dependent on the presence of electrons in the floating gate
- **programmability:** electrons can be made to tunnel into and out from the floating gate
- **non-volatility:** electrons remain in the floating gate when the device is powered down
- **durability:** tunnelling electrons into/from the floating gate is destructive (limiting the lifespan of the device)
- **reliability:** electrons can dissipate from floating gate under high stress environmental conditions (ie high temperature)

Architecture (2D)

- **scalability:** NAND flash is divided into "blocks" of floating gate transistors (cells)
- cells within a block are connected in a grid
 - bitline (BL) connects via source/drain in series
 - wordline (WL) connects via control gates in parallel
 - all cells in a wordline are programmed/read simultaneously
- all cells in the block must be erased simultaneously

Read Mechanism (1)

current flow through p-substrate

- potential V_{READ} applied to control gate
- if potential between control gate and floating is high enough, psubstrate is conductive
- floating gate "empty"
 - current flow through p-substrate
 - read as "1"
- floating gate "full"
 - no current flow through p-substrate
 - read as "0"

Read Mechanism (2)

۲

- **selected wordline:** V_{READ} is applied to control gates
 - current flows through p-substrate only if "level" of electrons in floating gate is less than V_{READ}
- **unselected wordlines:** V_{PASS}>V_{PROG} is applied to control gates
 - V_{PASS} large enough so that current flows through psubstrate even if floating gates are "full"
- **result:** current flows through bitline if and only if "level" of electrons in floating gate on selected wordline is less than V_{READ}
 - read as "1" if floating gate is "empty"
 - read as "0" if floating gate is "full"
- Typical time for read: $\sim 50 \mu s$

Flash Memory Summit 2019 Santa Clara, CA

Program Mechanism (1)

electron tunnel into floating gate

- potential V_{PROG} is applied to control gate
- if potential difference between control gate and p-substrate is large enough (~18V), electrons tunnel into floating gate
- to program (activate):
 - 0V is applied to p-substrate
 - electrons tunnel into floating gate
- to prevent program (inhibit)
 - V_{INH} is applied to p-substrate
 - electrons remain in p-substrate

Program Mechanism (2)

- **selected wordline:** V_{PROG}>V_{PASS} is applied to control gates
 - electrons tunnel into activated floating gates on selected wordlines
- **unselected wordlines:** V_{PASS} is applied to control gates
 - V_{PASS} low enough to prevent tunnelling of electrons into floating gate
- **pulse programming:** programming occurs in short pulses
 - prevent over programming of floating gate
 - pulse duration of order microseconds

Flash Memory Summit 2019 Santa Clara, CA

Program Mechanism (3)

- **read verify:** before program, target wordline is read
 - if a floating gate is "full", its bitline is inhibited
 - prevent over programming of floating gate
- activated bitlines: 0V is applied across bitline
 - electrons tunnel into floating gate of selected wordline
- inhibited bitlines: V_{INH} is applied across bitline
 - electrons remain in floating gate of selected wordline
- pulse programming continues until all cells are "full" or maximum iterations have occurred
- typical time for program: 1-10ms

Flash Memory Summit 2019 Santa Clara, CA

Erase Mechanism (1)

electron tunnel into p-substrate

V_{PROG}

- potential V_{ERAS} is applied to p-substrate
- if potential difference between psubstrate and control gate is large enough (~20V), electrons tunnel out of floating gate
- to erase
 - 0V is applied across the control gate
 - V_{ERAS} is applied to p-substrate
 - electrons tunnel into p-substrate

Erase Mechanism (2)

read verify: before erase, block is read

- if "most" cells are erased, erase is complete
- otherwise, pulse erase

pulse erase:

- V_{ERAS} is applies across bitlines
- 0V must be applied across all wordlines
- After pulse erase, perform read verify
- result: entire block is erase
 - not possible to erase single cells/wordlines
- typical time for erase: 5~10ms

Flash Memory Summit 2019 Santa Clara, CA

Program/Erase Granularity Mismatch

- an individual cell can only have its program level increased
 - electrons can be added to floating gate without "significantly" affecting other cells
 - electrons cannot be removed from floating gate without erasing all cells in the block
- "overwriting" not possible
 - must erase entire block first, then program wordline
 - but what happens to all of the wordlines I don't want to rewrite?

erase operation

Flash Memory Summit 2019 Santa Clara, CA

operations, common feature registers

1-4 targets per device

Multi Level NAND Flash (1)

- Single Level Cell (SLC)
 - erase state
 - 1 program state

• 1 read needed to get 1 bit of information per cell

- Multi Level Cell (MLC)
 - erase state

 3 reads needed to get 2 bits¹⁰ of information per cell

- Triple Level Cell (TLC)
 - erase state

• 7 reads needed to get 3 bits of information per cell

Multi Level NAND Flash (3)

- Quadruple Level Cell (QLC)
 - erase state

information per cell

Gray Code (1)

- how many reads needed to get 1 bit of information from M/T/QLC NAND?
- traditional approach: Gray Code
 - lower page: rL4 1 read

Gray Code (2)

- how many reads needed to get 1 bit of information from M/T/QLC NAND?
- traditional approach: Gray Code
 - middle page: NXOR(rL2,rL6) 2 reads

- how many reads needed to get 1 bit of information from M/T/QLC NAND?
- traditional approach: Gray Code
 - upper page: NXOR(rL1,rL3,rL5,rL7) 4 reads

- how many reads needed to get 1 bit of information from M/T/QLC NAND?
- traditional approach: Gray Code
- minimum: 1 read
- **maximum:** 2^{k-1} reads (for 2^k level NAND flash)
 - this does not scale well
 - significant variation in read times between page types

Beyond Gray Code

- other assignments exist that look to use similar number of reads for all page types
 - lower page: NXOR(rL1,rL5) 2 reads
 - middle page: NXOR(rL2,rL4,rL6) 3 reads
 - upper page: NXOR(rL3,rL7) 2 reads

۲

Multilevel Cell Programming (1)

- one shot programming:
 - pass in data for all pages (lower/middle/upper/top)
 - program once

Multilevel Cell Programming (2)

- multipass programming
 - pass in data for some (or all) pages
 - make intermediate program (1st pass)
 - pass in data for remaining (and previous) pages
 - (possibly) read intermediate program to "fill in the gaps"

PART 2: Error Characteristics

- broadening of V_{TH} distributions due to noise can lead to read error
- what are the main sources of noise?

- repeated application of program/erase (P/E) pulses leads to degraded reliability of the underlying NAND flash cells
- the measured raw bit error rate (RBER) increases as a function of P/E cycles
- low RBER at early life does not indicate a good block, and an early high RBER not a weak one!
- strong error-correction codes must be implemented on the controller to be able to deal with increased RBER

Data Retention

- over time electrons can "escape" from the programmed flash cells, causing a loss of threshold voltage
- this can cause a large increase in RBER unless the read voltage is shifted to compensate for charge loss
- the data retention effect is temperature dependent (charge escapes faster at higher temperature)

Dominant effect of read disturb is seen on Erase state

Flash Memory Summit 2019 Santa Clara, CA IBM

- When reading a particular page in a block of NAND Flash, a pass through voltage is applied to all other WL in order to "deselect" them
- This applied voltage can affect the V_{TH} distributed of the unselected WLs
- If a block is read from too many times, the RBER will increase to a point that the ECC is no longer able to correct
 - The controller must be able to manage such effects

Programming Errors

Degradation of erase state can cause error propagation during the two-pass programming procedure \rightarrow switch to 1-pass? Cells are programmed

Want to do your Own Investigations?

- Siglead NAND Analyzer series
- compatibility up to & including latest 128 layer TLC/QLC 3D NAND devices
- test multiple packages in parallel
- suitable for
 - NAND error characterization
 - NAND busy time characterization
 - NAND sorting, acceptance/rejection
 - data recovery
 - erasure verification
 - and more...
- visit <u>www.siglead.com</u> for more info

