MRAM HAS LANDED!
The Era of Gigabit Universal Memory Begins

Kevin Conley, President & CEO
MRAM Developer Day, August 6, 2019
Forward-Looking Statements

This presentation contains “forward-looking statements” that involve risks, uncertainties and assumptions. If the risks or uncertainties materialize or the assumptions prove incorrect, our results may differ materially from those expressed or implied by such forward-looking statements. All statements other than statements of historical fact could be deemed forward-looking statements, including, but not limited to: any estimates of addressable market size and our ability to capture that market, market trends and market opportunities, customer growth, product availability, technology developments, or other future events; any statements about historical results that may suggest future trends for our business; any statements regarding our plans, strategies or objectives with respect to future operations or business performance; any statements regarding future economic conditions; and any statements of assumptions underlying any of the foregoing. These statements are based on estimates and information available to us at the time of this presentation and are not guarantees of future performance. Actual results could differ materially from our current expectations as a result of many factors, including, but not limited to: market adoption of our products; our limited operating history; our ability to raise capital; our history of losses; our rate of growth; our ability to predict customer demand for our existing and future products; our ability to hire, retain and motivate employees; the effects of competition, including price competition; technological, regulatory and legal developments; and developments in the economy and financial markets. We assume no obligation, and do not intend, to update these forward-looking statements, except as required by law.
We have watched NAND Flash establish ever higher densities but larger blocks and bits/cell bring higher latency and lower endurance.

More bits/cell require more time to read and program.

Tighter distributions harder to maintain as flash cells wear.

More layers mean larger blocks of data to manage (more time to perform garbage collection).
We have watched DRAM bring increasing density and performance but bit cost benefits are slowing.
Only MRAM Demonstrates The Promise of Universal Memory

PERSISTENCE
Maintains memory contents without requiring power

PERFORMANCE
SRAM & DRAM-like performance with low latency

ENDURANCE
Superior durability supports memory workloads without sophisticated management

RELIABILITY
Best-in-class robustness designed and tested for extreme conditions
MRAM Technology Entering The Gigabit Era:
More than just density

1Gb Progress over 256Mb
80X the data retention:
10 years @ 85C

STT Enabling New Density Path
What about the MRAM Trilemma?

ENDURANCE
$10^6 \leftrightarrow 10^{14}$

DATA RETENTION
$1D \leftrightarrow 10Y$

BANDWIDTH

POWER

MRAM Trilemma Examples:
- eNVM or eSRAM replacement
 - (Data Retention or Speed/Endurance)
- Limited density vs. DRAM
Overcoming the MRAM Trilemma

ENDURANCE 10^{14}

DATA RETENTION 10Y

Universal Memory

HIGH BANDWIDTH & LOW POWER

Memory Cell Efficiency improvement will reduce the degree of tradeoffs present in today’s STT-MRAM
The State Of Advanced MRAM Manufacturing
Several equipment suppliers have 300mm production tools

Magnetic Materials Deposition

Etch
Logic Fabrication Progress
STT-MRAM enters mass production industry-wide

Producing 40nm and 28nm Discrete STT-MRAM (for Everspin)
22nm FDX embedded production expected 2019

22nm ULP Production 2019

22nm FD-SOI Production 2019

22nm FinFET Production Ready 2019

MRAM Partnership Announced

Others still to come
STT-MRAM Is Making Tracks In Addressing Data Center Latency

One small step for this revolutionary technology...
What Does Latency Cost?

Amazon found that every 100ms of latency cost them 1% in sales.
Google found that if a page takes more than 500ms to load, site traffic drops by 20%. An additional delay of 400ms in search responses reduces search volume by nearly 1%.
What Does Latency Cost?

A brokerage firm could lose as much as $4 million in revenue per ms if its electronic trading platform was only 5ms behind the competition. A 1ms advantage in latency can be worth upwards of $100 million per year.
Data Center Memory Hierarchy: Traditional Computing Focus

- Register
- SRAM Cache
- DRAM
- FLASH
- HDD

Higher Bit Latency
Higher Cost/bit
Flash Storage Disaggregation Puts Flash Latency Central

Flash Arrays subject to thousands of dissociated VMs further fragmenting workloads
Storage Bandwidth vs. Latency
In SSD Architecture

Non-Volatile Write Buffer

MLC NAND Flash

SATA3

4 CH

Power Fail Protection
Storage Bandwidth vs. Latency
In SSD Architecture

Non-Volatile Write Buffer

PCI Gen2

- Bigger Buffers
- More Capacitors

3D TLC NAND Flash

8 CH

- Bigger, Slower Blocks
- Lower Endurance
Storage Bandwidth vs. Latency in SSD Architecture

Non-Volatile Write Buffer

PCI Gen3 NVMe

Power Fail Capacitors limit buffer size and threaten reliability

16-32 CH

3D QLC NAND Flash

• Even Bigger, Slower Blocks
• Even Lower Endurance
MRAM Addresses Latency Challenge

- 2-3X Drive Life
- Improved 6-9s Latency QOS
- No Caps: higher reliability & more Flash Capacity

Non-Volatile Write Buffer Redesign

MRAM Enables More:

- NVMe Sets
- I/O Streams
- Zoned Name Spaces

Power Fail
5G Opens A Universe of MRAM Applications

Core

175 Zettabytes of data by 2025

Edge

By 2025 75% of enterprise data will be created and processed outside the Datacenter

End Points

27B Networked Devices by 2021 Producing 79 ZB

- Gaming
- Auto
- Smart Meter
- Electric Charger
- Other Industrial
- ATM
- Medical
STT-MRAM Takes On Universal Memory Challenge of 5G

Bringing a simpler, low power solution to the challenge of "always connected"

...One giant leap in the pursuit of Universal Memory
IoT Memory Requirements Changing

- Complexity High
- Data At Risk
- Slow System Init
- Power Inefficient
Compute Disruption – The Move to Universal Memory

- Complexity High
- Data At Risk
- Slow System Init
- Power Inefficient

- Unifying boot+code+data into a single memory greatly simplifies design
- Simpler design is easier to secure
- Data memory is inherently non-volatile – never at risk
- System can sleep with memory power off
Can STT-MRAM go where no memory has gone before?

5-Year STT-MRAM Prediction:

- DRAM-like Capacity
- Fast Random Access
- No Endurance Limit
- 10 years Data Retention
- Automotive Operating Temperature

STT-MRAM Is On The Path to True Universal Memory

Did we mention MRAM is naturally resistant to radiation in space?
THANK YOU!