Using MRAM to Enable Power Loss Protection of Data for NVMe

Pankaj Bishnoi
Director of Business Development
Everspin Technologies
Why STT-MRAM is a great choice?

- **Persistence** – STT-MRAM is inherently a non-volatile memory technology. No batteries or bulk caps needed.
- **Density** - 1Gb density provides bigger persistent buffer sizes for most applications in limited board space.
- **Throughput performance R/W** – DDR4 w/ x16 interface provides throughput of 2.7GBps with single device.
- **Data endurance** – Endurance in excess of 10’s of billions of cycles does not require any wear-leveling for NVMe block workloads.
- **Latency response time / QoS (ns)** – Design built with STT-MRAM provides ultra low and deterministic latencies with virtually no tail.
- **Data retention time (Years)** – Provides data retention for up to 10+ years at 85C.
- **Bit error rate (BER)** – Enable enterprise class designs with off the shelf SEC-DED ECC schemes.
- **Product reliability** – Develop highly reliable and top quality products without worrying about operating temperature range, capacitor and battery problems.
STT-MRAM: Use cases for NVMe designs?

Application Requirements

- Power loss protected Write Buffer
- Power loss protected Scramming Memory
- Power loss protected Ring Buffers
- Power loss protected Journaling
- High Performance Logging

Write Performance QoS (Low Latency) Reliability Persistence Endurance
STT-MRAM: Target NVMe Applications

1. PCIe SSDs (NVMe)
 For PLP Buffer

2. Fabric Accelerators
 For NVMe-oF & NVMe/TCP

3. Storage Accelerators
 For AFA & Hybrid Arrays
PLP Write Buffer for NVMe SSD

128MB+ large Buffer For Low Latency

10X More Space For Streams and ZNS zones

Simplified Architecture Speeds Time To Market

More Space For NAND Memory

Improved System Reliability

Support PMR

High QOS

Extended Drive Life

Increased Value Capture

Higher Storage Density

Lower Failure Rates

Enable PMR on space constrain FF

STT-MRAM can make your QLC based NVMe designs faster, better, more reliable and durable
NVMe SSD Implementations

TRADITIONAL ENTERPRISE SSD
- MRAM as buffer/cache
 - Data in flight
 - Delta FTL
- FTL in DRAM
- Caps are eliminated
- Additional MRAM power

OPEN CHANNEL/ZNS SSD
- MRAM replaces DRAM completely
 - Data in flight
 - Zones metadata
- FTL in host DRAM
- Lower BOM cost
- Caps are eliminated
Fabric Accelerator Purpose
Higher Performance & Agility

- Provide sub-μSec latency from wire to application data persistence
 - Kernel bypass
 - Host CPU bypass
 - Host memory bypass
 - Peer-to-Peer data transfers
 - RDMA termination

- Offload CPU computation cycles

- Customer configurable offload engines
 - ARM CPU code or FPGA code

- Provide higher write/read data throughput

- Enable simpler, lower power and lower cost appliance designs
 - Without need for x86 Server CPUs i.e. target ARM
Data flow for NVMe-oF or NVMe/TCP

Completion Options:
1. Wait till data written to persistent media (ex: NVMe SSD)
2. Use NVDIMM as system memory

System Memory

NVMe SSDs

Latency driven by completion path to persistent device

NVMe Offload NIC

PCIe Bus

System CPU

100Gb

Fabric

NVMe Target System
Completion architecture options with STT-MRAM:

1. On-board the NVMe Fabric storage offload device
2. Sister acceleration card next to offload device
Storage Accelerators for All Flash Arrays

Controller A
MRAM based Storage Accelerator

Controller B
MRAM based Storage Accelerator

Redundant Controllers

Fabric

Expandable SSDs

Port A
Port B
Why MRAM for Storage Accelerators

- Better Reliability
- Better IOPs and Latency performance
- Thermal Performance
- Better long term TCO
- Better U.2 form-factor product
- No waiting for battery or supercaps recharge on boot
- No serviceability of battery or supercaps required
Wrap-up: STT-MRAM in a NVMe Ecosystem

- **STT-MRAM** can be used as a persistent completion memory buffer for offloaded storage protocol to get lowest latency performance.
- **STT-MRAM** can be used as power loss protected persistent memory for serialization of ZNS zone data for 1000's of zones of array of SSDs.
- **STT-MRAM** can be used as power loss protected memory to cache metadata for each zone and/or buffer data in flight for ZNS serialization. No caps or DRAM required. Single chip solution (x8, x16 or x32).

Operating System (OS)
Host Managed FTL
Application & Driver Stack

Host CPU

Random Write Traffic

Host Memory Bus

NVMe SSDs Array

Zoomed in View of NVMe SSD
Design your next NVMe product with STT-MRAM

Buy MRAM enabled DDR IP from Synopsys or Cadence

Use standard SEC ECC to achieve 1E-20 UBER
Dedicated ECC: No change required
Inline ECC: Supported

Minimal FW changes required for MRAM support
and it will eliminate complex PLP design

Use standard SEC ECC to achieve 1E-20 UBER
Dedicated ECC: No change required
Inline ECC: Supported

3 SSD controller companies planning to support STT-MRAM
MRAM based SSDs will be shipping in 2020

Design VIP:
David Pena
djap@cadence.com

Design IP:
Mark Greenburg
mgreenberg@cadence.com

©2019 Everspin Technologies. All rights reserved.
Backup
STT-MRAM: Low Latency Write Burst Buffer

Incoming Data
- Variable Rate
- Bursts
- Latency sensitive

Application Requirements
- Power Loss Protection
- Persistent Data
- Low Latency & High Performance

Get Higher Overall System Application Performance by Using STT-MRAM As Write Buffer

Written to in big block sizes