Impact of Flash Trends On Hyper Converged Infrastructure (HCI)

Rakesh Radhakrishnan
Director, Product Management at VMware
Data has tremendous potential...

Information Growth
From now until 2020, the size of the digital universe will about double every two years

Source: IDC* and EMC* April 2014
If you can cope up with the volume!

Q: What are your organization’s top three pain points from a storage perspective?

Voice of the Enterprise: Storage Q4 2015 includes:
- 721 quarterly web-based surveys with IT End-user Decision-makers on a worldwide basis.
- ~25 interviews quarterly with leading-edge senior IT executives, providing a ‘narrative’ view of the market.

Sampling that is a representative of small, midsize and large enterprises in private and public sectors.

Dealing with Data/Capacity Growth: 55.4%
Capacity Planning/Forecasting: 34.0%
High Cost of Storage (Capex): 30.4%
Delivering Adequate Storage Performance: 29.3%
Meeting Disaster Recovery Requirements: 29.0%
High Cost of Storage (Opex): 17.7%
Meeting Backup Windows: 17.1%
Dealing with Multiple Storage Silos: 16.6%
Lack of Skilled Staff: 14.2%
Meeting Compliance/Regulatory/Governance Requirements: 14.2%
Dealing with Storage Migrations: 13.1%
Dealing with New Applications: 9.5%
Other: 4.5%

Percent of Sample

n = 639

HCI is the Fastest Growing Storage Segment

 HCI is replacing traditional storage in the enterprise

Total TAM for HCI by 2020 = $20 Bn

HCI is the Fastest Growing Storage Segment

Traditional Storage Systems Shipped

Source: IDC Worldwide Quarterly Enterprise Storage Systems Tracker

The information on the roadmap is intended to outline our general product direction and it should not be relied on in making a purchasing decision. It is for informational purposes only and may not be incorporated into any contract.

CONFIDENTIAL – Shared under NDA ONLY
Tiered Architecture: New Era of Storage Technologies

Yesterday
- Low latency devices too expensive for persistent storage
- Device latency >> Network latency

Future
- NAND Flash: the new Capacity tier
- High capacity NVMe
- Byte-addressable NVDIMMs
- Network latency >> Device Latency
Trend 1: Modernization of the Data Center Being Fueled by HCI

- Modern Scale Out Architecture
- Lower total costs
- Simplified management
- Greater agility and scale

Traditional 3-Tiered Architecture
- Complex and Separate Silos
- Servers and Blades
- External Storage
- Networking Hardware

Hyper-Converged Infrastructure
- Unified Management
- Virtualization
 - Compute | Storage | Network
- Built on Industry-Standard Servers and Switches
Trend 2: 3D NAND & Optane will drive Performance & Scale-Out for HCI

- Decreased Latency
- Performance Scaling
- Lower Solution Costs
- Reduced Bottlenecks
- Massive Capacity
- Reduced Cost Per Transaction
HCI Workload Segmentation

<table>
<thead>
<tr>
<th>Use cases</th>
<th>80% of HCI Market</th>
<th>10-20% HCI Market; Emerging workloads expected to increase 3X in 2 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Purpose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage Dense</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compute Intense</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composable Infrastructure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edge / IoT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use cases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCA, Database, VDI, DR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Archiving, Video streaming, Analytics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Web apps, HPC, real time analytics, In-memory DB, VDI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data warehouse, Search engine databases, Log aggregation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROBO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardware Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rack Servers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rack Servers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blade Servers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composable Infrastructure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edge Computing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supported Hardware Examples</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dell – R740</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPE – DL 380/360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cisco – C 240/220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and many more</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cisco - S-series</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPE - Apollo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dell – FX2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPE – Moonshot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cisco – Blade Servers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPE - Synergy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dell – R6415 (AMD EPYC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cisco – E series</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Trend 3: Disaggregation being fueled by workloads requiring different ratio of Compute & Storage

Workload Examples: Data warehouse, Search engine databases, Log aggregation, Analytics

- **Hardware Based Disaggregation**
 - Composable Infrastructure
 - Different Ratios of Compute Blades + Storage Modules
 - HPE - Synergy

- **Software based Disaggregation**
 - <HCI cluster> to <HCI cluster>
 - <ESXi cluster> to <ESXi cluster>
 - <Storage shared across multiple clients: proprietary HCI protocol>
 - <HCI cluster boundary>
 - Storage only Nodes (denser storage)
Trend 4: High Speed Storage Networking Required for Compute - Storage Disaggregation

NVMe-oF benefits for HCI

- Scale storage and compute independently for workloads requiring high speed data access
- Retain the simplicity of HCI management for provisioning and disaggregation workflows
New Paradigm Shift in Application Design

New tier of memory/storage choice

Today: Two Memory Choices
- **DRAM**
 - Speed: Super-Fast
 - Non-Volatile: Volatile
 - Cost-Effective: Expensive

- **Flash**
 - Speed: Slow
 - Non-Volatile: Inexpensive

Soon: More Memory+Storage Choices
- **DRAM**
 - Speed: Super-Fast
 - Non-Volatile: Volatile
 - Cost-Effective: Expensive

- **PMEM**
 - Speed: Fast
 - Non-Volatile: Relatively Inexpensive

- **Flash**
 - Speed: Slow
 - Non-Volatile: Inexpensive

Developers can now make memory trade-offs to optimize apps; realize new capabilities
Trend 5: Persistent Memory Will Enable Apps with New Capabilities

Promise of PMEM for Apps such as SAP Hana, Redis & GemFire

- Databases that work a lot faster
 - Keep data in-memory rather than write to disk – faster & persistent

- Applications that reboot faster
 - In-memory is now non-volatile

- Faster streaming applications
 - PMEM has bigger cache than DRAM

- Highly Precise Real-time processing
 - PMEM is byte-addressable

- Applications that restart faster in HA
 - 4 minutes with Pmem vs 50 minutes with SSD

- Lower hardware TCO
 - PMEM is cheaper than DRAM