Effective use of QLC flash in Hyperscale Datacenters

Prodigy Universal Processor

Dr. Radoslav Danilak
Legal Disclaimers

NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. TACHYUM ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF TACHYUM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, OR MERCHANTABILITY.

All information provided here is subject to change without notice. Nothing in these materials is an offer to sell any of the components or devices referenced herein.

Tachyum is a trademark of Tachyum Ltd., registered in the United States and other countries, Tachyum Prodigy is a trademarks of Tachyum Ltd. Other products and brand names may be trademarks or registered trademarks of their respective owners.

©2018 Tachyum Ltd. All Rights Reserved.
10 Yeas of World-Class Innovation

10x Flash Life
$20 → $3 / GB
SLC → MLC

100x Flash Life
$20 → $3 → $1 / GB
eMLC → MLC → TLC
Compression + Dedup.

300x Flash Life
25ȼ → 9ȼ → 1ȼ / GB
TLC → QLC
Compression + Dedup.
Hyperscale-Out
Flash is cheaper than 10TB HDD for hyperscale

- Disk 11¢/GB: 3 copies 10TB $320 = 9.6¢/GB + 1.4¢/GB system
- Flash 9¢/GB: 32GB USB $2.5 = 7.8¢/GB + 1.2¢/GB system

1¢/GB effective achievable for flash

- 5:1 compress+dedup., 2:1 thin provisioning + snapshots + clones

3 copies vs. RAID6 used to avoid 4x slowdown

- RAID6 3 reads + 3 writes reduces 2x performance at 4:1 R/W
- If drive is failed then additional 2x slow down during rebuild
Solution for Flash-Only Datacenter

8 x 64-256GB RDIMM

2 x 400G Ethernet

4 DDR5 200GB/s
500GB/s HBM

4 DDR5 200GB/s
500GB/s HBM

32 x PCIE 5.0 x2
500GB/s SSDs
10x Bandwidth at Same Cost

Copper Rack → Edge → Fabric → Spine

4096 x 200GE

Copper Rack → Fiber Spine

128 x 2x100GE PAM4 switch chip
12U 4K ports x 200GE switch
front-connector-back cards
Private Cloud Architecture

Max 16 EB 100B IOPS
250 + 4 redundancy 1.6%
10x Effective Life Amplification

- 10x life amplification from compression
 - 2:1 compression & 5% free space => 10x life amplification
 - SandForce with IBM proved 10x life in real life applications

![Graph showing the relationship between compression and write amplification. The graph shows a decrease in write amplification as the compression ratio increases, indicating improved life amplification.]
100x Effective Life Amplification

- 2.5x Deduplication and improved compression
 - From 2:1 compression to 5:1 compression and deduplication

- 3x One write instead of 3 writes for RAID6
 - Recycling and compression done on system - not SSD level
 - Data written sequentially; protection symbols are accumulated

- 1.33x Thin provisioning, zero overhead clones & snapshots
 - All above invented by Skyera and Pure Storage for flash storage

- $100 \times \text{life} = 2.5 \times 3 \times 1.33 \times 10\times \text{compression} + \text{recycling}$
Enterprise storage & cloud storage both use 3-copy system
 - RAID6: useless when rack fails or part of the building get damaged
 - Primary system has hot mirror system and also backup system

3x From system level failure tolerance without 3 copies
 - Write data & metadata sequentially across flash in different systems
 - Allows for 2-4 complete system failures without data unavailability
300x Effective Life Amplification

N + 2 systems redundancy
Zero overhead backups

3x Lower $/GB
QLC Can Replace HDD in Datacenters

- Assume 300 P/E (Program/Erase) cycles for QLC flash
 - 90,000 effective cycles = 300 x life amplification x 300 P/E cycles
 - If existing RAID6, snapshots, cloned and thick provisioning
 - If we make 3 copies for protecting against system failures

- Seagate 1 HAMR head laser writes 2PB during lifetime
 - 2PB/head/1TB = 2K full writes → equivalent to flash 2K P/E cycles

- QLC endurance is sufficient with Tachyum Prodigy chips
 - 300 P/E cycle QLC has similar effective endurance as conventional datacenters using SSDs with flash endurance 90,000 P/E cycles
Prodigy: Universal Processor / AI Chip

- Prodigy is a Server/AI/Supercomputer Chip
 - For hyperscale datacenters, HPC and AI markets
 - Ultra High performance / Ultra Low Power

- First time humanity can simulate human brain-sized neural networks in real-time

- Prodigy Outperforms CPU, GPU and TPU
 - CPU: easy to program, costly & power hungry
 - GPU: much faster but very hard to program
 - TPU: faster but more limited apps than GPU
Prodigy: AI for Datacenters CAPEX Free

- Universal Processor / AI chip
 - 10x more AI using idle servers
- Avg. over 24 hours: 60-80% of servers are idle
 - <5% of servers have AI GPUs
 - Prodigy idle servers to be re-configured to HPC/AI systems
- Existing Processors too slow for AI; GPU/TPUs are used
Brain Simulation In Hyperscale Datacenters

- SpiNNaker system 518,400 processors simulates rat brain
 - Human brain simulation requires 1,000x more performance

- 100+ brain-capable 100MW datacenters with 400K servers
 - 40% utilization means 265,420 idle servers
 - Use $100B of underutilized equipment in the world
Datacenters consume 2% total electricity
• Consume 40% more power than UK
• Emit more CO2 than world’s airliners

10% of planet energy by 2030
• 15% growth: is 2x every 5 years
• 40% of planet energy by 2040

New Technology is needed
• 10x lower power to continue growth
Flash only datacenters below HDD cost

Prodigy
Faster & 10x more efficient processor than Xeon

Status
Tape-out 2019, production 2020

Visit us: www.Tachyum.com
Follow us:

2018 Winner
new 64-bit architecture that combines elements of RISC, CISC, and VLIW

$24B market
10x less power

451 Research attractive proposition for hyperscale cloud providers, which could potentially build a single architecture that could be repurposed

1st real-time human brain sized neural network sim

Hyperscale/AI/HPC
3x Lower Capex