Get Software Out of the Way

Of High Performance Flash Arrays

Tom Matson

Business Development Manager, Storage, One Stop Systems
Application / Storage Trends

• More Data
• More Users
• More Flash
• More Network Bandwidth
• More Low Latency...
• More Feature Options
• More Complexity
What is the Answer?

• Must Be Easy
 • Just pick your favorite All Flash Array
 • Plug it in and all problems are solved!

• But Wait a Minute
 • Every customer application mix is different
 • Data sets, read/write mix, latency requirements
 • And customization isn’t usually an option
AFA Reality

• Design Points
 • Every vendor has a starting point for their architecture
 • Older ones were designed for SAS SSDs or even hard drives
 • Compromises made along the way
 • Legacy software features come along for the ride
 • Software builds up over time

• Upgrading to NVMe
 • Throughput and latency changes the equation
 • To achieve full performance, need to eliminate the bloat and balance the system
So Let’s Dig In

Need to Eliminate All Bottlenecks for Balanced Performance
Potential Design Bottlenecks

• Initiator to Storage Network
 • 10 Gb/s Ethernet used to seem so fast!
 • With NVMe speed, needs to be much faster
 • 2 port EDR InfiniBand (100 Gb/s); 2 port 100 Gb/s Ethernet; 32 Gb/s FC (4 port)

• NVMe Drive Connection
 • Not all slots are created equal!
 • Many systems route x16 PCIe buses to 2 sections of drives
 • After first 4 drives, theoretically out of bandwidth!
 • Reality is that 6-8 drives are needed to saturate
Design Bottlenecks (cont)

⚠️ • NVMe Drives
 • NVMe doesn’t mandate high performance!
 • Check the IOPS (R and W) and write endurance to match application requirements
 • Keep in mind the bandwidth limit of the internal PCIe bus connection

⚠️ • Network Cards
 • Be careful that the internal PCIe routing doesn’t limit bandwidth
 • A x4 connection only supports 4 GB/s (32 Gb/s)
 • Dual port for performance and fault tolerance (4 port for FC performance)
Design Bottlenecks (cont)

⚠️ • Processor
 • Watch out for how the PCIe links are committed
 • Integrated networking not always the way to go

⚠️ • High Availability Link
 • HA with dual systems requires replication link
 • Link performance can have a huge impact, as data must be committed
 • Similar to network connection, don’t limit to x4
 • Need method to throttle to minimize impact to application performance
Design Bottlenecks (cont)

• Software Features
 • Before NVMe, CPU had plenty of time to handle features

• NVMe Makes Everything Worse!
 • Less time spent waiting for data delivery
 • Overhead is more exposed

• Features Can Chew Up Processor Cycles and Increase Latency
 • Processor-intense compression
 • File systems
 • Encryption
 • Management layer
 • Snapshots
A Little Test

- read_u128_kb1024_0n1.out: read: IOPS=2847, BW=2848MiB/s
- read_u128_kb1024_0n1:1n1.out: read: IOPS=5690, BW=5691MiB/s
- read_u128_kb1024_0n1:1n1:2n1.out: read: IOPS=8525, BW=8526MiB/s
- read_u128_kb1024_0n1:1n1:2n1:3n1.out: read: IOPS=11.3k, BW=11.1GiB/s
- read_u128_kb1024_0n1:1n1:2n1:3n1:4n1.out: read: IOPS=12.4k, BW=12.2GiB/s
- read_u128_kb1024_0n1:1n1:2n1:3n1:4n1:5n1.out: read: IOPS=12.5k, BW=12.2GiB/s
- read_u128_kb1024_0n1:1n1:2n1:3n1:4n1:5n1:6n1.out: read: IOPS=14.5k, BW=14.2GiB/s
- read_u128_kb1024_0n1:1n1:2n1:3n1:4n1:5n1:6n1:7n1.out: read: IOPS=16.6k, BW=16.2GiB/s
- read_u128_kb1024_0n1:1n1:2n1:3n1:4n1:5n1:6n1:7n1:8n1.out: read: IOPS=18.6k, BW=18.2GiB/s
- read_u128_kb1024_0n1:1n1:2n1:3n1:4n1:5n1:6n1:7n1:8n1:9n1.out: read: IOPS=20.7k, BW=20.2GiB/s
- read_u128_kb1024_0n1:1n1:2n1:3n1:4n1:5n1:6n1:7n1:8n1:9n1:10n1.out: read: IOPS=22.7k, BW=22.1GiB/s
- read_u128_kb1024_0n1:1n1:2n1:3n1:4n1:5n1:6n1:7n1:8n1:9n1:10n1:11n1.out: read: IOPS=23.7k, BW=23.2GiB/s
Summary

• Data Delivery is the key to application performance today

• All Flash Arrays don’t all solve the same problem

• Balancing every path is critical

• Choose your flash solution wisely!