Motti Beck

Motti Beck is Sr. Director of Marketing, Enterprise Data Center market segment at Mellanox Technologies, Inc. Before joining Mellanox, Motti was a founder of several start-up companies including BindKey Technologies that was acquired by DuPont Photomask (today Toppan Printing Company LTD) and Butterfly Communications that was acquired by Texas Instrument. Prior to that he was a Business Unit Director at National Semiconductors. Motti hold B.Sc in computer engineering from the Technion - Israel Institute of Technology.
InfiniBand Networked Flash Storage

Superior Performance, Efficiency and Scalability

Motti Beck – Sr. Director Enterprise Market Development, Mellanox Technologies
The Need for Intelligent and Faster Interconnect

Faster Data Speeds and In-Network Computing Enable Higher Performance and Scale

CPU-Centric (Onload) vs. Data-Centric (Offload)

- CPU-Centric (Onload): Must Wait for the Data Creates Performance Bottlenecks
- Data-Centric (Offload): Analyze Data as it Moves! Higher Performance and Scale

Flash Memory Summit 2018
Santa Clara, CA
In-Network Processing Enables Higher Efficiency

- Higher Scalability
- Lower latency
- Higher ROI
InfiniBand Technical Overview

- What is InfiniBand?
 - InfiniBand is an open standard, interconnect protocol developed by the InfiniBand® Trade Association: http://www.infinibandta.org/home
 - First InfiniBand specification was released in 2000

- What does the specification includes?
 - The specification is very comprehensive
 - From physical to applications

- InfiniBand SW is open and has been developed under OpenFabrics Alliance
 - http://www.openfabrics.org/index.html
InfiniBand Protocol Layers

![InfiniBand Protocol Layers Diagram]
InfiniBand Architecture Highlights

- Reliable, lossless, self-managed fabric
- Hardware based transport protocol- Remote Direct Memory Access (RDMA)
- Centralized fabric management – Subnet Manager (SM)
Reliable, Lossless, Self-Managed Fabric

- Credit-based link-level flow control
 - Link Flow control assures **NO packet loss** within fabric even in the presence of congestion
 - Link Receivers grant packet receive buffer space credits per Virtual Lane
 - Flow control credits are issued in 64 byte units

- Separate flow control per Virtual Lanes provides:
 - Alleviation of head-of-line blocking
 - Virtual Fabrics – Congestion and latency on one VL does not impact traffic with guaranteed QOS on another VL even though they share the same physical link
Remote Direct Memory Access (RDMA)

- Transport offload
- Kernel bypass
10X Better Performance with GPUDirect™ RDMA

- Purpose-built for Acceleration of Deep Learning
- Lowest communication latency for acceleration devices
- No unnecessary system memory copies and CPU overhead
- Enables GPUDirect™ RDMA and ASYNC, ROCm and others
- InfiniBand and RoCE

Flash Memory Summit 2018
Santa Clara, CA
Scaling HPC and ML with GPUDirect over InfiniBand on vSphere 6.7

Figure 3: Testbed virtual cluster architecture showing the no-GPUDirect RDMA vs. GPUDirect RDMA data path with DirectPath I/O on vSphere 6.7

Source: Scaling HPC and ML with GPUDirect RDMA on vSphere 6.7
Subnet Management

Each Subnet must have a Subnet Manager (SM)

Every entity (HCA, Switch or Router) must support a Subnet Management Agent (SMA)

Topology Discovery
Fabric Initialization
Fabric Maintenance

HCA
Switch
Subnet Manager
System Memory
CPU

Directed Route MADs:

Management use unreliable datagrams (MAD)

Initialization uses

Multipathing: LMC Supports Multiple LIDS

LMC: 1

LID = 6, 7
InfiniBand Superior Performance*

Network Throughput and Latency

CPU Overhead for Network Operations

(a) Throughput

(b) Latency

(a) Client

(b) Server

* Source: Brown University Research: "The End of Slow Networks: It’s Time for a Redesign"
InfiniBand Enables Most Cost Effective Database Storage

Exadata X5-2 Product Components

• **Scale-Out Database Servers**
 - Two 18-core x86 Processors (36 cores)
 - Oracle Linux 6
 - Oracle Database Enterprise Edition
 - Oracle VM (optional)
 - Oracle Database options (optional)

• **Fastest Internal Fabric**
 - 40 Gb/s InfiniBand
 - Ethernet External Connectivity

• **Scale-Out Intelligent Storage**
 - High-Capacity Storage Server
 - Extreme Flash Storage Server
 - Exadata Storage Server Software

Source: Oracle
InfiniBand Networking Storage enables Higher Efficiency

PDW* V1 Reference: The Basic Full Rack

Per RACK details
- 160 cores on 10 compute nodes
- 1.28 TB of RAM on compute
- Up to 30 TB of temp DB
- Up to 150 TB of user data

Parallel Data Warehouse
10X Faster & Lower Capital Cost

Per RACK Details
- 128 cores on 8 compute nodes
- 2TB of RAM on compute
- Up to 168 TB of temp DB
- Up to 1PB of user data

*Parallel Data Warehouse
Source: Big Data Integration with SQL Server PDW 2012
RDMA enables Higher Scalability with IBM DB2 pureScale

Scale-out Throughput – DB2 pureScale on LE POWER Linux

- 3.5x scaling on RDMA Ethernet, 1-4 members
- 3.1x scaling on TCP sockets, 1-4 members

- 80% read / 20% write OLTP workload
- POWER8 4c/32t, 160 GB LBP
- 10 Gb RoCE RDMA Ethernet / 10 Gb TCP sockets

Source: IBM
BYNET’s basic link performance enhanced with InfiniBand

- Dual InfiniBand links provide 10GB per second
- 10X higher than previous BYNET®

Message delays decreased
- Latency in interconnect reduced by 2/3

Teradata BYNET® V5 Performance

Throughput
(Higher = better)

<table>
<thead>
<tr>
<th></th>
<th>Mbytes/Second</th>
</tr>
</thead>
<tbody>
<tr>
<td>BYNET® V5</td>
<td>10,000</td>
</tr>
<tr>
<td>BYNET® V4</td>
<td>960</td>
</tr>
<tr>
<td>10GbENet</td>
<td>3,470</td>
</tr>
<tr>
<td>1GbENet</td>
<td>462</td>
</tr>
</tbody>
</table>

Latency
(Lower = better)

<table>
<thead>
<tr>
<th></th>
<th>Microseconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>BYNET® V5</td>
<td>3</td>
</tr>
<tr>
<td>BYNET® V4</td>
<td>10</td>
</tr>
<tr>
<td>10GbENet</td>
<td>10</td>
</tr>
<tr>
<td>1GbENet</td>
<td>20</td>
</tr>
</tbody>
</table>
InfiniBand Unleashed the Power of Flash

Hadoop HDFS Architecture

Hadoop GPFS Architecture

Flash Memory Summit 2017
Santa Clara, CA

Source: Driving IBM BigInsights Performance Over GPFS Using InfiniBand+RDMA
InfiniBand Accelerate Big Data Analytics

Source: Driving IBM BigInsights Performance Over GPFS Using InfiniBand+RDMA

Flash Memory Summit 2018
Santa Clara, CA
TeraSort - Performance Results

Source: HWCSAIS18

Flash Memory Summit 2018
Santa Clara, CA
RDMA Enables Higher Performance SDS Solutions

Traditional Solution

- Virtual Machines
- Virtual Hosts
- Connectivity: Fibre Channel / iSCSI / FCoE / SAS
- SAN
- Disk Connectivity
- Raw Storage

Converged Solution

- Virtual Machines
- Connectivity: SMB3
- SAN
- Raw Storage

Hyperconverged Solution

- Virtual Machines
- Virtualization and Storage Host
- Compute and Storage
 - Storage Software

Efficiency

*Microsoft’s Solutions
InfiniBand Cuts SAN Cost by 50%

- Delivers SAN-like functionality from the Windows Stack
 - Using SMB Direct (SMB 3.0 over RDMA)

- Utilize inexpensive, industry-standard, commodity hardware
 - Eliminate the cost of proprietary hardware and software from SAN solutions

Source: Microsoft Flash Memory Summit 2018 Santa Clara, CA
RoCE – RDMA (InfiniBand) over Converged Ethernet

- InfiniBand transport over Ethernet
- API Compatible
- Efficient, light-weight transport, layered directly over
 - Ethernet – RoCE
 - UDP – RoCEv2
- Takes advantage of DCB Ethernet
 - PFC, ETS, and QCN
DataON WSSD* Hyper-Converged Infrastructure

- Microsoft’s WSSD Certified
- RoCE networking
- Increased efficiency
 - 30X** vs. previous solution

*Source: DataON Flash Memory Summit 2018 Santa Clara, CA

** Source: DataON Windows Server Software-Defined
iSER – iSCSI with RDMA Extensions
iSER Delivers 3X Higher Efficiency vs. iSCSI

Flash Memory Summit 2018
Santa Clara, CA
RDMA enabled Networking Powers Modern Storage Platforms

Higher Performance, Higher Efficiency and Higher Scalability
Peter Onufryk

- Peter is a Fellow in the Data Center Solutions Business Unit, where he is responsible for architecture and validation of storage products. He received a Ph.D. in Electrical and Computer Engineering from Rutgers University, has been granted over 40 patents.
PCIe® Networked Flash Storage

Peter Onufryk
Microsemi Corporation
PCI Express® (PCIe®)

- Specification defined by PCI-SIG®
 - www.pcisig.com
- Packet-based protocol over serial links
 - Software compatible with PCI and PCI-X
 - Reliable, in-order packet transfer
- High performance and scalable from consumer to Enterprise
 - Scalable link speed (2.5 GT/s, 5.0 GT/s, 8.0 GT/s, 16 GT/s, and 32 GT/s)
 - Gen5 (32 GT/s) is still being standardized
 - Scalable link width (x1, x2, x4, ..., x32)
- Primary application is as an I/O interconnect
PCle Characteristics

- Scalable speed
 - Encoding
 - 8b10b: 2.5 GT/s (Gen 1) and 5 GT/s (Gen 2)
 - 128b/130b: 8 GT/s (Gen 3), 16 GT/s (Gen4) and 32 GT/s (Gen5)
- Scalable width: x1, x2, x4, x8, x12, x16, x32

<table>
<thead>
<tr>
<th>Generation</th>
<th>Raw Bit Rate</th>
<th>Bandwidth Per Lane Each Direction</th>
<th>Total x16 Link Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gen 1*</td>
<td>2.5 GT/s</td>
<td>~ 250 MB/s</td>
<td>~ 8 GB/s</td>
</tr>
<tr>
<td>Gen 2*</td>
<td>5.0 GT/s</td>
<td>~500 MB/s</td>
<td>~16 GB/s</td>
</tr>
<tr>
<td>Gen 3*</td>
<td>8 GT/s</td>
<td>~ 1 GB/s</td>
<td>~ 32 GB/s</td>
</tr>
<tr>
<td>Gen 4</td>
<td>16 GT/s</td>
<td>~ 2 GB/s</td>
<td>~ 64 GB/s</td>
</tr>
<tr>
<td>Gen 5</td>
<td>32 GT/s</td>
<td>~4 GB/s</td>
<td>~128 GB/s</td>
</tr>
</tbody>
</table>

Note
* Source – PCI-SIG PCI Express 3.0 FAQ
NVM Express™ (NVMe™)

- Two specifications
 1. NVM Express (PCIe)
 2. NVM Express over Fabrics (RDMA and Fibre Channel)
- Architected from the ground up for NVM
 - Simple optimized command set
 - Fixed size 64 B commands and 16 B completions
 - Supports many-core processors without locking
 - No practical limit on the number of outstanding requests
 - Supports out-of-order data deliver

PCle SSD = NVMe SSD
Ideal NVM Fabric

<table>
<thead>
<tr>
<th>Property</th>
<th>Ideal Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>Free</td>
</tr>
<tr>
<td>Complexity</td>
<td>Low</td>
</tr>
<tr>
<td>Performance</td>
<td>High</td>
</tr>
<tr>
<td>Power consumption</td>
<td>None</td>
</tr>
<tr>
<td>Standards-based</td>
<td>Yes</td>
</tr>
<tr>
<td>Scalability</td>
<td>Infinite</td>
</tr>
</tbody>
</table>
PCle Fabric

NVMe Host 1

NVMe Host 2

NVMe Host 3

NVMe Host 4

PCIe Switch

NVMe SSD

NVMe SSD

NVMe SSD

NVMe SSD

PCIe Switch

NVMe SSD

NVMe SSD

NVMe SSD

NVMe SSD

PCIe Switch

NVMe SSD

NVMe SSD

NVMe SSD

NVMe SSD
Non-Transparent Bridging (NTB)

Flash Memory Summit 2018
Santa Clara, CA
Dynamic Partitioning

Physical View

Functional View

NVMe Host 1
NVMe Host 2
PCIe Switch
NVMe SSD 1
NVMe SSD 2
NVMe SSD 3
NVMe SSD 4

Type 1 Function
PCI-to-PCI Bridge

Virtual PCI Bus

NVMe SSD 1
NVMe SSD 2
NVMe SSD 3
NVMe SSD 4
NVMe SR-IOV
Multi-Host I/O Sharing
PCIe Fabric

- **Storage Functions**
 - Dynamic partitioning (drive-to-host mapping)
 - NVMe shared I/O (shared storage)
 - Ability to share other storage (SAS/SATA)

- **Host-to-Host Communications**
 - RDMA
 - Ethernet emulation

- **Manageability**
 - NVMe controller-to-host mapping
 - PCIe path selection
 - NVMe management

- **Fabric Resilience**
 - Supports link failover
 - Supports fabric manager failover
Fabric Performance

- A high performance fabric means:
 - High bandwidth
 - Low latency

- Increasing bandwidth is easy
 - Aggregate parallel links
 - Increase link speed (fatter pipe)

- Reducing latency is hard
 - Transfer latency is typically a small component of overall latency
 - Other sources of latency:
 - Software (drivers)
 - Complex protocols
 - Protocol translation
 - Fabric switches/hops
Latency

- Media Access Time
 - Hard drive – Milliseconds
 - NAND flash – Microseconds
 - Next-gen. NVM – Nanoseconds
The PCIe Advantage

Other Flash Storage Networks

PCIe Fabric
Latency data from Z. Guz et al., "NVMe-over-Fabrics Performance Characterization and the Path to Low-Overhead Flash Disaggregation" in SYSTOR '17
PCIe Fabric Characteristics

<table>
<thead>
<tr>
<th>Property</th>
<th>Ideal Characteristic</th>
<th>PCIe Fabric</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>Free</td>
<td>Low</td>
<td>• PCIe built into virtually all hosts and NVMe drives</td>
</tr>
<tr>
<td>Complexity</td>
<td>Low</td>
<td>Medium</td>
<td>• Builds on existing NVMe ecosystem with no changes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• PCIe fabrics are an emerging technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Requires PCIe SR-IOV drives for low-latency shared storage</td>
</tr>
<tr>
<td>Performance</td>
<td>High</td>
<td>High</td>
<td>• High bandwidth</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• The absolute lowest latency</td>
</tr>
<tr>
<td>Power consumption</td>
<td>None</td>
<td>Low</td>
<td>• No protocol translation</td>
</tr>
<tr>
<td>Standards-based</td>
<td>Yes</td>
<td>Yes</td>
<td>• Works with standard hosts and standard NVMe SSDs</td>
</tr>
<tr>
<td>Scalability</td>
<td>Infinite</td>
<td>Limited</td>
<td>• PCIe hierarchy domain limited to 256 bus numbers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• PCIe has limited reach (cables)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• PCIe fabrics have limited scalability (less than 256 SSDs and 128 hosts)</td>
</tr>
</tbody>
</table>
Persistent Memory & Next Gen. NVM

Traditional Memory
- Volatile
- Byte addressable
- Memory load/store operations
- Memory bus

Traditional Storage
- Non-volatile (persistent)
- Block, file, or object addressable
- I/O operations
- Storage interconnect

Next Generation NVM
- Non-volatile (persistent)
- Byte, block, file, or object addressable
- Memory load/store operations and I/O operations

Examples: phase-change memory (PCM), resistive RAM (RRAM), spin-transfer-torque magnetic RAM (STT_MRAM), ferroelectric RAM (fRAM)
NVMe and Memory Operations

- **Controller Memory Buffer (CMB)**
 - PCI memory space exposed to host (byte addressable)
 - May be used to store commands & data
 - Contents **do not** persist across power cycles and resets

- **Persistent Memory Region (PMR)**
 - PCI memory space exposed to host (byte addressable)
 - May be used to store data
 - Content persist across power cycles and resets
NVMe together with a PCIe fabric allow direct network to storage and accelerator to storage communications

Example:

1. Data transferred from network to NVMe CMB
2. NVMe block write operation imitated from CMB to NVM
 ... sometime later ...
3. NVMe block read operation initiated from NVM to CMB
4. GPU/Accelerator transfers data from NVMe CMB for processing
Putting it All Together

- NVMe Storage Functions
 - Dynamic partitioning (drive-to-host mapping)
 - NVMe shared I/O (shared storage)
- Direct accelerator-to-NVMe and network-to-NVMe transfers
- Byte addressable persistent memory
Summary

• PCIe fabrics build on the existing PCIe and NVMe ecosystem
 • Work with standard NVMe SSDs, OS drivers, and PCIe infrastructure

• PCIe fabrics support both byte addressable memory and traditional storage operations

• PCIe fabrics are well suited for applications that require low cost, the absolute lowest latency, and limited scalability
 • NVMe SSD sharing inside a rack and small clusters

• PCIe fabrics are not well suited for long reach applications or where a high degree of scalability is required
 • NVM Express over Fabrics (NVMe-oF™) is well suited for these applications