An Advanced Flash Emulator for Designing Today’s High-Capacity Controllers

Th. Antonakopoulos, N. Toulgaridis, M. Varsamou, E. Bougioukou and T. Petropoulos

University of Patras
Greece
Overview

- Why NAND Flash emulation at system level is needed?
- What are the challenges of emulation at system level?
- The architecture of NAND Flash Emulator
 - System Architecture
 - Memory Organization
 - Low-latency memory access
 - Experimental results
- Beyond the current NAND Flash Emulator
NAND Flash emulation at the system level

- **Storage devices**
 - Multiple memory ICs organized in channels
 - Multiple channels operating in parallel
 - Large memory capacity per channel (a few 10s or 100s GBs) – Huge capacity at system level (xTBs)
 - High IO rates and fast response time, especially when a page is read
 - Complicated functions (i.e. wear leveling, workload balancing) in the storage controller

- Full system prototyping and testing before the actual memory chips are available, based only on their specifications.
- Evaluate under different loading conditions the performance of the implemented algorithms
- Reduce time-to-market for the storage device when new memory chips become available

There is a need for an NAND Flash Channel Emulator that can emulate the whole memory capacity of a device and respond in real-time according to the NAND Flash specs.
The main challenges of a system Flash emulator

- **Emulate the whole system capacity**
 - Single board emulators have limited fast memory capacity (x10GBs)
 - Storage systems have multiple channels with multiple dies/channel and their total capacity ranges from x100GBs up to xTBs.

 Solution: Exploit the DRAM capacity of server motherboards
 - Directly accessed by the host processor, indirectly accessed by devices attached to PCIe slots
 - Access is affected by the used host processor (number of DRAM controllers, internal data paths)

- **Respond in real-time according the Flash IC specs**
 - Data access time in NAND Flash: 30 to 50 usecs and the page transfer time depends on the NAND Flash interface supported and the Flash page size.
 - Multiple channels operating in parallel generate asynchronous access requests
 - The latency introduced by the Operating System has to be avoided

 Solution: Use a fast PCIe-based FPGA board where the DUT is attached
 - Custom logic has to be developed for direct access to the host’s DRAM.
 - Modular design for supporting different Flash interfaces
Uses a low-cost commercially available motherboard that support the maximum possible DRAM (xTB)

Uses a PCIe card with a high-speed SoC FPGA that acts as the digital front-end to the DUT.

Modular re-usable system design

Split the design into two FPGAs boards, if needed.

- FPGA boards are interconnected using a High-Speed Digital Link (HSDL), i.e. xSFP+.

Advantages:

- Supports minimum latency, high capacity, various I/O NAND Flash interfaces and provides flexibility on the mechanical attachment of the DUT.

- Minimum additional development effort when new memory devices have to be supported.
NAND Flash Emulator Architecture

ONFI 1.0 - 3.0
50 - 400 MBps
Multiple CEs

ONFI Toggle etc.

I2C Control

DRAM Contr.

DRAM

Flash Cmds Processing Unit (FCPU)

Parameters RAM

Local Cmds Processing

Soft-CPU

Hardware Debugger Tracer

3CPU
Three (R/W/E) Commands Processing Unit

PCIe Controller (Gen.3, 8 lanes)

PCIe Switch

Emulated NAND Flash at Host DRAM (xTB)

Xeon Processor Ubuntu OS

SSD

PCIe Gen.3, 8/16 lanes

NFE Application Software

UNIVERSITY OF PATRAS
NAND Flash Emulator Architecture

ONFI 1.0 - 3.0
50 - 400 MBps
Multiple CEs

ONFI Toggle etc.

I2C Control

DRAM Contr.

DRAM

Flash Cmds Processing Unit (FCPU)

Parameters RAM

Local Cmds Processing

Soft-CPU

Hardware Debugger Tracer

3CPU
Three (R/W/E)
Commands Processing Unit

PCIe Controller (Gen.3, 8 lanes)

PCle Gen.3, 8/16 lanes

NFE Application Software

PCIe Switch

Emulated NAND Flash at Host DRAM (XTB)

Xeon Processor
Ubuntu OS

SSD
NAND Flash Emulator Architecture

ONFI 1.0 - 3.0
50 - 400 MBps
Multiple CEs

ONFI Toggle etc.

I2C Control

DRAM Contr.

DRAM

Emulated NAND Flash at Host DRAM (xTB)

PCIe Gen.3, 8/16 lanes

PCIe Controller (Gen.3, 8 lanes)

Flash Cmds Processing Unit (FCPU)

Parameters RAM

Local Cmds Processing

Soft-CPU

Hardware Debugger Tracer

3CPU
Three (R/W/E) Commands Processing Unit

Xeon Processor
Ubuntu OS

SSD

NFE Application Software

Flash Memory Summit

PCIe Switch
NAND Flash Emulator Architecture

- ONFI 1.0 - 3.0
- 50 - 400 MBps
- Multiple CEs

- Toggle etc.
- I2C Control
- DRAM Contr.
- DRAM
- Parameters RAM

- Soft-CPU
- Local Cmds Processing

- Hardware Debugger Tracer

- PCIe Controller (Gen.3, 8 lanes)
- NFE Application Software
- PCIe Gen.3, 8/16 lanes

- Emulated NAND Flash at Host DRAM (xTB)
- Xeon Processor Ubuntu OS
- SSD

- PCIe Switch
- 3CPU
- Three (R/W/E) Commands Processing Unit

- NFE

- NAND Flash Emulator Architecture
NAND Flash Emulator Architecture

ONFI 1.0 - 3.0
50 - 400 MBps
Multiple CEs

Parameters RAM
Local Cmds Processing

Soft-CPU

3CPU
Three (R/W/E)
Commands Processing Unit

PCIe Controller (Gen.3, 8 lanes)

PCIe Switch

Xeon Processor
Ubuntu OS
SSD

Emulated NAND Flash at Host DRAM (xTB)

ONFI Toggle etc.

I2C Control

DRAM

DRAM Contr.

Emulated NAND Flash at Host DRAM (xTB)

PCIe Gen.3, 8/16 lanes

NAND Flash Emulator Software

Flash Memory Summit
NAND Flash Emulator Architecture

- ONFI 1.0 - 3.0
- 50 - 400 MBps
- Multiple CEs

- ONFI Toggle etc.
- I2C Control
- DRAM Contr.
- DRAM
- PCIe Controller (Gen.3, 8 lanes)
- PCIe Switch
- Emulated NAND Flash at Host DRAM (xTB)
- Xeon Processor Ubuntu OS
- SSD

- Flash Cmds Processing Unit (FCPU)
- Parameters RAM
- Local Cmds Processing
- Soft-CPU
- Hardware Debugger Tracer
- 3CPU
 - Three (R/W/E) Commands Processing Unit

- NFE Application Software
- PCIe Gen.3, 8/16 lanes
NAND Flash Emulator Architecture

- ONFI 1.0 - 3.0
 - 50 - 400 MBps
 - Multiple CEs

- ONFI Toggle etc.

- I2C Control

- DRAM Contr.

- DRAM

- Parameters RAM

- Local Cmds Processing

- Flash Cmds Processing Unit (FCPU)

- Soft-CPU

- Hardware Debugger Tracer

- PCIe Controller (Gen.3, 8 lanes)

- PCIe Switch

- PCIe Gen.3, 8/16 lanes

- NFE Application Software

- NFE

- Emulated NAND Flash at Host DRAM (xTB)

- SSD

- Xeon Processor Ubuntu OS

- 3CPU
 - Three (R/W/E) Commands Processing Unit

- NAND Flash Emulator Architecture

- ONFI toggle etc.

- ONFI 1.0 - 3.0
 - 50 - 400 MBps
 - Multiple CEs

- I2C Control

- DRAM Contr.

- DRAM

- Parameters RAM

- Local Cmds Processing

- Flash Cmds Processing Unit (FCPU)

- Soft-CPU

- Hardware Debugger Tracer

- PCIe Controller (Gen.3, 8 lanes)

- PCIe Switch

- PCIe Gen.3, 8/16 lanes

- NFE Application Software

- NFE

- Emulated NAND Flash at Host DRAM (xTB)

- SSD

- Xeon Processor Ubuntu OS

- 3CPU
 - Three (R/W/E) Commands Processing Unit
NAND Flash Emulator Architecture

ONFI 1.0 - 3.0
50 - 400 MBps

Multiple CEs

ONFI Toggle etc.

I2C Control

DRAM

ONFI 1.0 - 3.0
50 - 400 MBps
Multiple CEs

Emulated NAND Flash at Host DRAM (xTB)

PCIe Gen.3, 8/16 lanes

NFE Application Software

PCIe Controller (Gen.3, 8 lanes)

PCIe Switch

Xeon Processor Ubuntu OS

SSD

Flash Memory Summit
Data Flow in the NAND Flash Emulator

- Ubuntu
 - NFE Application Software
 - NFE Device Driver

- PCIe
 - 3CPU #0
 - 3CPU #1
 - Debugger Tracer
 - Local Memory
 - NFE Control (uB)

- Flash Cmds Processing Unit (FCPU)

- File
 - NFE Host Memory
Data Flow in the NAND Flash Emulator

Ubuntu

NFE Application Software

NFE Device Driver

NFE Host Memory

File

PCle

3CPU #0

3CPU #1

Debugger Tracer

Local Memory

NFE Control (uB)

Flash Cmds Processing Unit (FCPU)

CH-0

CH-1
Data Flow in the NAND Flash Emulator

Ubuntu

NFE Application Software

NFE Device Driver

File

NFE Host Memory

NFE Control (uB)

Local Memory

Flash Cmds Processing Unit (FCPU)

PCIe

3CPU #0

3CPU #1

Debugger Tracer

File

Flash Memory Summit 2018
Santa Clara, CA
Data Flow in the NAND Flash Emulator

- Ubuntu
- NFE Application Software
- NFE Device Driver
- File
- NFE Host Memory
- PCIe
- 3CPU #0
- 3CPU #1
- Debugger Tracer
- Local Memory
- NFE Control (uB)
- Flash Cmds Processing Unit (FCPU)
- CH-0
- CH-1

Data Flow in the NAND Flash Emulator

Flash Memory Summit 2018
Santa Clara, CA
Memory Organization and Emulator Capabilities

2 channels, 4 dies/channel
Memory Organization and Emulator Capabilities

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td>4.22</td>
<td>5.0</td>
<td>107.3 M</td>
<td>64</td>
<td>64</td>
<td>16 – 4</td>
</tr>
<tr>
<td>8.0</td>
<td>8.44</td>
<td>9.0</td>
<td>59.6 M</td>
<td>128</td>
<td>32</td>
<td>8 – 4</td>
</tr>
<tr>
<td>16.0</td>
<td>17.25</td>
<td>18.0</td>
<td>29.8 M</td>
<td>256</td>
<td>16</td>
<td>4 - 4</td>
</tr>
<tr>
<td>16.0</td>
<td>18.16</td>
<td>19.0</td>
<td>28.2 M</td>
<td>512</td>
<td>8</td>
<td>4 - 2 or 2 - 4</td>
</tr>
</tbody>
</table>

512 GB emulated NAND Flash (DRAM: 576 up to 640 GB)
Prototype of the NAND Flash Emulator

HTG-K800
Xilinx Kintex UltraScale KU085

Emulates up to
- 2 NAND Flash channels
- 4 - 8 CE per channel
- 2 GB L1 cache
- Specs
 - ONFI 1.0 - 3.0
 - Toggle 1.0 - 2.0

<table>
<thead>
<tr>
<th>DIMM capacity</th>
<th>Total DRAM</th>
<th>DRAM for NFE</th>
<th>Emulated NAND Flash Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>64 GB</td>
<td>512 GB</td>
<td>496 GB</td>
<td>480 GB</td>
</tr>
<tr>
<td>128 GB</td>
<td>1 TB</td>
<td>768 GB</td>
<td>656 GB</td>
</tr>
</tbody>
</table>
NAND Flash Emulator Software

DRAM Initialization

1. NAND Flash IC
2. SSD
3. DRAM

Operation

1. Emulator initialization
2. Start
3. Status update
4. End

Log/tracing info

- NAND Flash parameters
- Emulator initialization

Flash Memory Summit

[Image of a computer motherboard]
3CPU and Tracer Architecture

DMAs data width: 16 up to 128 bits
NAND Flash Emulator - Timing

Timing

- **Page size [B]**
- **Read Time [usecs]**
- **Write Time [usecs]**
- **ONFI**
- **Transfer Rate [MBps]**
- **Transfer Time [usecs]**
- **Transfer Time over PCIe (8 lanes Gen3, 128 bits DMA) [usecs]**
- **NAND Flash Channels supported**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,640</td>
<td>50</td>
<td>1,300</td>
<td>2.0</td>
<td>166</td>
<td>52.0</td>
<td>2.6</td>
<td>18</td>
</tr>
<tr>
<td>8,640</td>
<td>35</td>
<td>300</td>
<td>2.2</td>
<td>200</td>
<td>43.2</td>
<td>2.6</td>
<td>12</td>
</tr>
<tr>
<td>18,592</td>
<td>50</td>
<td>1,400</td>
<td>3.0</td>
<td>166</td>
<td>112.0</td>
<td>5.1</td>
<td>8</td>
</tr>
<tr>
<td>18,592</td>
<td>50</td>
<td>1,400</td>
<td>3.0</td>
<td>333</td>
<td>55.8</td>
<td>5.1</td>
<td>8</td>
</tr>
</tbody>
</table>

Flash IF

- **35 – 50 usecs**
- **40 – 140 usecs**
- **50 - 400 MBps**

FCPU

- **2.6 – 5.1 usecs**
- **up to 6 GBps**

3CPU

PCIe

- **Flash Memory Summit**
- **UNIVERSITY OF PATRAS**

23
3CPU Experimental Results

17,408 B/page
128 pages/block
Tracer Performance

16 GB at Host DRAM
Multiple-channels NAND Flash emulator characteristics:

• Supports a large number of NAND Flash channels
• Practically supports unlimited NAND Flash Capacity
• Responds according to the NAND Flash chips
• Supports ONFI and Toggle interfaces
• Due to its modular design can be re-used for emulating other Non-volatile Memory (NVM) technologies and/or other IO interfaces (i.e. eMMC)
• Design of new algorithms based on data analytics (i.e. minimize read latency by predicting future read/write commands)
Thank you for your attention!

Questions?

http://www.loe.ee.upatras.gr/English/COMES-home.htm
Back-up slides
NAND Flash Emulator

Single board configuration

Two boards configuration

x10Gbps

GbE
Emulation using a cluster of servers - case #1

Single server cannot support the capacity of the storage device
Emulation using a cluster of boards

Single DFE cannot support the number of channels of the storage device
Emulation using a cluster of servers - case #2
Prototype of the NAND Flash Emulator

<table>
<thead>
<tr>
<th>DIMM capacity</th>
<th>Total DRAM</th>
<th>DRAM for NFE</th>
<th>Emulated NAND Flash Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 GB</td>
<td>128 GB</td>
<td>112 GB</td>
<td>96 GB</td>
</tr>
<tr>
<td>32 GB</td>
<td>256 GB</td>
<td>250 GB</td>
<td>224 GB</td>
</tr>
<tr>
<td>64 GB</td>
<td>512 GB</td>
<td>496 GB</td>
<td>480 GB</td>
</tr>
<tr>
<td>128 GB</td>
<td>1 TB</td>
<td>768 GB</td>
<td>656 GB</td>
</tr>
</tbody>
</table>

Emulates up to
• 2 NAND Flash channels
• 4 - 8 CE per channel
• 2 GB L1 cache
• Specs
 • ONFI 1.0 - 3.0
 • Toggle 1.0 – 2.0

Xeon E5-2650 v4
HTG-K800
Xilinx Kintex UltraScale KU085
Tracer Experimental Results

<table>
<thead>
<tr>
<th>MBps</th>
<th>Transfer time [usecs]</th>
</tr>
</thead>
<tbody>
<tr>
<td>66</td>
<td>264</td>
</tr>
<tr>
<td>200</td>
<td>87</td>
</tr>
<tr>
<td>400</td>
<td>44</td>
</tr>
</tbody>
</table>