NVMe-OF Enterprise Appliances

Moderator:

Jeremy Werner, Sr. VP and GM SSD Business Unit

Toshiba Memory America
Panelists

Kamal Hyder
Director of PLM
KumoScale
Toshiba Memory

Manoj Wadekar
Director HW Engineering
eBay

Yaniv Romem
CTO & Co-Founder
Excelero

Nishant Lodha
Product Marketing
Manager
Marvell (Cavium)
NVMe Enabling the Future
Powering the next generations of storage

Kamal Hyder
Toshiba Memory America, Inc.
NVMe Excitement Continues!

- New Protocol, Exclusively for Flash
- Multiple Fabrics: RDMA, FC, TCP
- End-to-end support
- Native OS support
- Growing interest in Disaggregated Flash
- Suitable for Enterprise and Cloud Data Center Architectures

- Lowest Latency, Highest Performance ever! Storage no longer the Bottleneck
- Greenfield and Existing Environments
- Initiators to Switches to Targets
- Linux Kernel 4.9+, others in progress
- Multiple Vendors Supporting the Concept
- Bringing High Performance to Multiple Areas
We’ve Seen the Consolidation Movie Before

Homogenous “SAN Islands”

Consolidation over Multiprotocol Networks

Services at Multiple Layers – Fabrics and Storage

Phase I: Isolated Storage Islands

ERP Island
HR Island
Engineering Island
DAS

Phase II: Consolidation/MultiProtocol Transport

Tier1 Business Applications
Midrange Applications
VSANs
Multi-protocol
HA
QoS
WAN
ACL
Security
Mgmt
Scalability

Pooled Disk and Tape

Phase III: Differentiated Services

Tier1 Business Applications
Midrange Applications
Host Services
Fabric Services
Disk Services
Array Services
Service Classes
HyperScale Storage

Manoj Wadekar
eBay
ebay Hyper scale Infrastructure

- Search
- Hadoop
- Databases
- Deep Learning AI
- Front-End & Product
- Object Store
Typical hyper scale servers: **Design goals**

- **Efficiency**: Utilization, commonality
- **Growth**: Performance, Capacity
What’s needed:

Rack-As-A-Compute

Node Local Storage

CPU

Ethernet

Rack Local Storage

CPU
Rack-As-A-Compute

Right Sizing:
- Clusters can use optimized ratio of compute and storage.
- Allows reducing wastage and improve performance

Independent Scaling:
Compute and storage capacities can be scaled per need
Distributed NVMe Architectures

Yaniv Romem
Excelero
How is flash deployed today?

All Flash Array
- Separate application servers & scale-out flash appliances
- Share capacity & performance across applications
- Fabric/Network hop involved

In Server SSDs
- Application, CPU & Flash in one appliance
- Capacity & Performance cannot be shared among isolated appliances
- Applications can take full advantage of NVMe performance
NVMe flash: So Many IOPs, So much Bandwidth…

- NVMe solid state drives offer so much performance, one server struggle to make efficient use of a fully stuffed server
- This makes architectural choices even more important
 - Connectivity choice can impact performance
- Shared-nothing architectures have benefits
Distributed NVMe deployment options

Local Shared Storage in Application Servers
- Storage is unified into one pool
- Target Module & Client Block Driver run on all nodes
- Linearly scalable

Storage is Centralized
- Storage is unified into one pool
- Target Module runs on storage nodes
- Client Block Driver runs on server nodes
- Applications get performance of local storage
Hyper-scale Challenges

Challenges for web-scale applications

- Maximize operational efficiency and architectural flexibility
- Achieve rigorous business objectives: 100% uptime, low TCO
- Meet complex application requirements: scalability, performance
- New application workloads such as real-time analytics and AI make hyper-scale challenges more onerous

Benefits of Converged Architectures

- SDS on standard servers enables hardware homogeneity
- Maximum utilization of NVMe SSD’s by creating a single pool of high-performance block storage
- No data localization for scale-out applications
- Can achieve predictable application performance – no noisy neighbors
The “well-connected” NVMe!

Nishant Lodha
Marvell (Cavium)
What Do You Mean “Well-Connected” for NVMe?
Ethernet Speeds and Feeds!

Server Speed Transition in Enterprise

Server shipments into cloud continue while 25G/50G adoption grows

100G started getting deployed at Scale in Data Centre

Source: Del’Oro Research, 2017
Trending all around the DC!

Smart NICs recognized as new adapter category

Disaggregated Storage (AFA, JBOF)

Rise of SDN/NFV in Telco Cloud and birth of Edge Compute

Industry embraces Open architectures

Emergence of Hybrid Cloud & secure Micro-services

Software Defined Data Center (SDDC)

Smart NICs vs Regular NICs

Low-Cost Stateless Servers

JBOFs (Just a Bunch Of Flash)

Ethernet Fabric

Armoire underneath storage from here...

then scale and shove it over here.

OCP 3.0 Mezz.

OCP ACCEPTED

SmartNICs

Regular NICs
Scaling our NVMe Requires a (Real) Network

- Many options, plenty of confusion
- Fibre Channel is the transport for the vast majority of today’s all flash arrays
 - FC-NVMe Standardized in Mid-2017
- RoCEv2, iWARP and InfiniBand are RDMA-based but not compatible with each other
 - NVMe-oF RDMA Standardized in 2016
- FCoE fabric is an option
- NVMe/TCP - making it way through the standards process
NVMe-oF: Making the “Well-Informed” Choice?

Not “just” about “fabrics” performance
Culture and Install Base
Use Cases
Architected for Performance

nvm EXPRESS®

Architected for Performance