Session NVMe-201-1
NVMe and NVMe-oF in Enterprise Arrays

Sponsored by NVM Express Organization, the owner of NVMe standards.
NVM Express Sponsored Track for Flash Memory Summit 2018

<table>
<thead>
<tr>
<th>Track</th>
<th>Title</th>
<th>Speakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVMe-101-1</td>
<td>8/7/18 8:30-9:35 NVM Express: NVM Express roadmaps and market data for NVMe, NVMe-oF, and NVMe-MI - what you need to know the next year.</td>
<td>Janene Ellefson, Micron J Metz, Cisco, Amber Huffman, Intel David Allen, Segate</td>
</tr>
<tr>
<td></td>
<td>8/7/18 9:45-10:50 NVMe architectures for in Hyperscale Data Centers, Enterprise Data Centers, and in the Client and Laptop space.</td>
<td>Janene Ellefson, Micron Chris Peterson, Facebook, Andy Yang, Toshiba Jonmichael Hands, Intel</td>
</tr>
<tr>
<td>NVMe-102-1</td>
<td>3:40-4:45 8/7/18 NVMe Drivers and Software: This session will cover the software and drivers required for NVMe-MI, NVMe, NVMe-oF and support from the top operating systems.</td>
<td>Uma Parepalli, Cavium Austin Bolen, Dell EMC Myron Loewen, Intel Lee Prewitt, Microsoft, Suds Jain, VMware David Minturn, Intel James Harris, Intel</td>
</tr>
<tr>
<td></td>
<td>4:55-6:00 8/7/18 NVMe-oF Transports: We will cover for NVMe over Fibre Channel, NVMe over RDMA, and NVMe over TCP.</td>
<td>Brandon Hoff, Emulex Fazil Osman, Broadcom J Metz, Cisco, Curt Beckmann, Brocade Praveen Midha, Marvell</td>
</tr>
<tr>
<td>NVMe-201-1</td>
<td>8/8/18 8:30-9:35 NVMe-oF Enterprise Arrays: NVMe-oF and NVMe is improving the performance of classic storage arrays, a multi-billion dollar market.</td>
<td>Brandon Hoff, Emulex Clod Barrera, IBM, Mike Kieran, NetApp Brent Yardley, IBM</td>
</tr>
<tr>
<td>NVMe-202-1</td>
<td>8/8/18 3:20-4:25 NVMe-oF JBOFs: Replacing DAS storage with Composable Infrastructure (disaggregated storage), based on JBOFs as the storage target.</td>
<td>Bryan Cowger, Kazan Networks Praveen Midha, Marvell Fazil Osman, Broadcom</td>
</tr>
<tr>
<td></td>
<td>8/8/18 4:40-6:45 Testing and Interoperability: This session will cover testing for Conformance, Interoperability, Resilience/error injection testing to ensure interoperable solutions base on NVM Express solutions.</td>
<td>Brandon Hoff, Emulex Tim Sheehan, IOL Mark Jones, FCIA Jason Rusch, Viavi Nick Kriczky, Teledyne</td>
</tr>
</tbody>
</table>
Abstract and Agenda

• Abstract:
 • Enterprise Arrays: NVMe-oF and NVMe is improving the performance of classic storage arrays, a multi-billion dollar market.

• NVMe-oF Panel
 • Storage Segmentation – Brandon Hoff, Emulex
 • NVMe over Fabrics Overview - Clod Barrera, IBM
 • NVMe over Fabrics on Enterprise Arrays, ANA, and more – Mike Kieran, NetApp
 • Performance Improvements at the Storage Array
 • Performance improvements in NVMe over Fabrics at the initiator and end-to-end – Brandon Hoff, Emulex
 • Performance Improvements in the Sever and End-to-End
 • Q&A
NVMe over Fabrics – Storage Architectures

Enterprise Arrays - Traditional SAN
- Benefits:
 - Storage services (dedup, compression, thin provisioning)
 - High availability at the array
 - Fully supported from the array vendor
 - Example: NetApp/IBM

Server SAN/Storage Appliances
- Benefits:
 - High performance storage
 - Lower cost than storage arrays, minimal storage services
 - Roll-your-own support model
 - Ex. SUSE on Servers configured to be storage targets

JBOF/Composable Storage
- Benefits:
 - Very low latency
 - Low cost
 - Great for a single rack/single switch
 - Leverages NICs, smart NICs, and HBAs for NVMe-oF to PCIe/NVMe translation
Enterprise Storage Market

- Fibre Channel storage shows strong growth in capacity
 - Fibre Channel Storage capacity shipped is larger than all other types of external storage combined
- The adoption of All Flash Arrays and NVMe storage will drive the need for faster networks
- iSCSI is the dominate technology block over Ethernet
- The only RDMA market for block storage is Infiniband

Block Storage Capacity Shipped

<table>
<thead>
<tr>
<th>Petabytes Shipped</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibre Channel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iSCSI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other Includes: FICON, FCoE, Infiniband, External SAS
IDC WW Capacity Shipped
Three Areas of Performance Improvement

End to End Performance Improvements

Enterprise Arrays - Traditional SAN

Server
- Performance Improvement is from a shorter path through the OS storage stack with NVMe & NVMe-oF

Front side of the Storage Array
- Performance Improvement a shorter path through the target stack.

Back side of the Storage Array
- Performance improvement by moving from SAS/SATA drives to NVMe.
NVMe over Fabric for Enterprise Arrays

Clodoaldo Barrera

Brent Yardley

IBM
Directions in Storage Networking

- **10GE -> 100GE dominates the Cloud infrastructure**
 - CSPs adopt new Ethernet technology faster than Enterprise
 - Less constrained by legacy install base.

- **FC continues link speed generations (now on Gen 6 at 32Gbps)**
 - Expect gradual decline in FC SAN share of storage attachment
 - Storage fabrics for new workloads, CSPs, Cold storage all favor IP storage attach – iSCSI, NAS, and REST Object Storage APIs.
NVMe and NVMe-oF

- NVMe protocol enables native parallelism within SSDs and All Flash Arrays (AFA)
- NVMe allows more efficient host software stacks for lower latency at application
- User-space drivers for selected software (e.g. In-memory DB) for maximum benefit

“IBM Storage and the NVM Express Revolution” Koltsidas & Hsu 2017 – IBM Redpaper
NVMe-oF Performance Benefits

- NVMe and NVMe-oF have new kernel driver stacks in hosts to reduce lock contention and increase parallelism. Improved throughput and lower latency.

- For I/O-bound workloads, NVMe-oF lowers server I/O load and wait times.

- IBM benchmark on 16Gb FC and IBM FlashSystem AFA showed 30% lower CPU utilization from I/O

- From IBM Research – Spark application with RDMA connection to storage from user space showed up to 5X improvement in performance.

- Requires complete re-structure of I/O system and application awareness/modification
NVMe and NVMe over Fabric

- Fast Media requires a new protocol with Memory/Storage semantics
- NVMe is a new block memory/storage protocol that replaces SCSI. Flash storage is capable of higher IOP performance, throughput, and parallelism not possible on HDDs
- NVMe over PCIe – PCIe provides short distance connection for a processor to a small number of NVMe devices (SSDs)
- NVMe-oF - NVMe protocol is mapped to a fabric for distance and fanout. Supported fabrics include FC (Gen 5,6), Ethernet or IB SAN
The Benefits of Continuity

- Storage Fabrics are a significant client investment
 - Management of full storage path
 - Performance and availability management
 - Audit controls
 - Upgrade migration process
 - Application and middleware compatibility testing
 - Security verification
 - Etc....

NVMe-oF
(NVMe between hosts and storage)

NVMe
(Within storage array)
Value of NVMe/NVMe-oF

- Optimized for Flash
- Fast and Getting Faster
- Reduce Application License costs
- Future proof investment
- NVMe end-to-end strategy
NVMe and NVMe-oF in Enterprise Arrays

Session NVMe-201-1

Mike Kieran
NetApp Technical Marketing Engineer
Real-Time Applications: The Next Phase of Digital Transformation

In-memory technologies will grow to ~$13B by 2020*

Artificial Intelligence Machine Learning Real-Time Analytics

All demand lower latency and higher performance from faster fabrics and faster media

Impact of NVMe For Media Access

NVMe useful for SSDs but required for the next generation of solid state

- Drive Latency
- IO Controller Latency
- Software Latency

- HDD
 - ~ 25 µs
 - ~ 10 µs
 - ~ 10 ms

- SAS TLC NAND SSD
 - ~ 80 µs
 - ~ 20 µs
 - ~ 10 µs

- NVME TLC NAND SSD
 - ~ 80 µs
 - ~ 5 µs

- NVME SCM SSD (Local)
 - ~ 2 µs
 - ~ 5 µs

- NVME-oF SCM SSD (Remote)
 - ~ 6 µs
 - ~ 5 µs

© 2018 NetApp, Inc. All rights reserved. --- NETAPP CONFIDENTIAL ---
NextGen Blocks - NVMe

What are NVMe-oF and FC-NVMe?

- FCP - SCSI-3 command set encapsulated in an FC frame
- FC-NVMe - NVMe command set encapsulated in an FC frame

- Replaces SCSI-3 CDBs in a FC Frame
- Substantial performance boost because of:
 - Command streamlining
 - Reduced context switches
 - Increased multithreading - 64,000 queues with a maximum queue depth of 64,000
NetApp’s NVMe Vision

Driving real value out of new technologies requires significant investment on multiple fronts from a market leader.
FCP (SCSI) vs. NVMe/FC Performance and Latency

- Single Port Performance: NVMe/FC offers 3x improvement over FCP.
- Latency: NVMe/FC reduces latency by ~80 µS compared to FCP.
- IO Performance: NVMe/FC increases peak IOPS by 50% compared to FCP.
NVMe Vocabulary Update

Getting used to new terminology as we migrate from SCSI to NVMe-oF

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Type</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>iSCSI</td>
<td>IQN</td>
<td>iqn.1991-05.com.microsoft:dmrtk-srvr-m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FC</th>
<th>FC-NVM</th>
<th>namespace</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUN</td>
<td>NQN</td>
<td>NQN</td>
</tr>
<tr>
<td>WWPN</td>
<td>NQN</td>
<td></td>
</tr>
<tr>
<td>igroup</td>
<td>Subsystem</td>
<td></td>
</tr>
<tr>
<td>ALUA</td>
<td>ANA*</td>
<td></td>
</tr>
</tbody>
</table>

* Asymmetric Namespace Access (NetApp defined multipathing protocol for NVMe. Currently out for ratification by NVM Express organization.)
Ratified: Asymmetric Namespace Access

- Concept: Namespaces with multiple paths may have asymmetric properties
- Base protocol is ratified
- Domains and partitioning work is next
NVMe over Fibre Channel Performance Test

Application Servers

Emulex LPe32002 32GFC HBAs (one per server)

Emulex LPe32002 32GFC HBAs (qty. 2 per node, 2 nodes)

The target 32GFC adapters can run SCSI FCP and NVMe/FC concurrently

Brocade G620 32GFC Switch

NetApp AFF A700s
NVMe over Fibre Channel Performance on a A700s single node

Random Read 4KB
Latency vs. IOPS

Latency (µs)

IOPS

Note: all measurements taken on a single-node A700s. Standard implementations are dual-node.

Sequential Read 32KB
Latency vs. Throughput

Latency (µs)

Throughput (MB/s)

Note: all measurements taken on a single-node A700s. Standard implementations are dual-node.

Random Read 4KB (zoom in)
Latency vs. IOPS

Latency (µs)

IOPS

Note: all measurements taken on a single-node A700s. Standard implementations are dual-node.

Sequential Read 64KB
Latency vs. Throughput

Latency (µs)

Throughput (MB/s)

Note: all measurements taken on a single-node A700s. Standard implementations are dual-node.
Performance Improvements at the Initiator, and general storage performance improvements with NVMe over Fabrics
Server Test Configuration – Initiator performance

Target Servers – Qty 2
- Dual CPU - Purley
- 32G Dual-Port LPe32002 – 1 Port in use
- RHEL7.4 w/OCS-RAMd (SCSI Target)
- SLES12SP3 w/LPFC-T (NVMe Target)

Initiator
- Dual CPU - Purley
- 32G Dual-Port LPe32002 – 1 Port in use
- SLES12SP3 w/LPFC Driver (v.12.0.141.2)

Test Parameters: 32 threads and queue depth = 32
NVMe-oF: Lean Stack Delivers more IOPs with less CPU

Customer Comments
– “NVMe over Fabrics delivers more transactions on the same storage footprint”
– “Our storage strategy going forward is based on NVMe over Fabrics,” Large Health Care provider

Performance Benefits
– On average 2x-3x more IOPs at the same CPU consumption
– At 4k, we see 2x the IOPs at 50% of the CPU consumption
NVMe-oF: Just runs faster

Application Latency: Response time as seen by the server application

- A function of the number of outstanding IOs
- For this example, 32 (QD) x 32 threads, which means 1024 outstanding IOs

Single IO Latency: Function of what the hardware can do

NVMe benefits from increased parallelization
Performance Improvement of NVMe over Fabrics – End to End

NVMe/FC Vs. SCSI/FC Performance Improvement on the same hardware

Simulated OLTP Workload IOPS

- NVMe/FC: 2900 IOPS
- SCSI FCP: 1000 IOPS

Data Warehouse IO Throughput

- NVMe/FC: 5000 MB/s
- SCSI FCP: 1000 MB/s

Batch Transaction Latency Test

- NVMe/FC: 0.5 ms
- SCSI FCP: 2 ms

- **3.6x More Transactions**
- **2.7x Higher Throughput**
- **½ The Latency**

1. 4K Random Read IOs, 16 Threads, Queue Depth of 16
2. 64K Random Read IOs, 16 Threads, Queue Depth of 16
3. 4K Random Read IOs, 8 Threads, Queue Depth of 1
Contact Information

For more information please contact the following:

Brandon Hoff brandon.hoff@broadcom.com
Clod Berrera barrerac@us.ibm.com
Mike Kieran Michael.Kieran@netapp.com