STT-MRAM applications use in IBM FCMs

Brent Yardley
STSM, Chief Hardware Engineer, Master Inventor, IBM
Wednesday, August 8th, 2018

NEWM-202B-1: MRAM (New Memory Technologies Track)
Introducing The IBM FlashCore Module

IBM FlashCore™ technology delivers key differentiators

- Built in, performance neutral **hardware compression** and **encryption**
- Using **64 layer 3DTLC NAND**
- Enterprise data **reliability**
- Cognitive Algorithms for **Wear Levelling, Health binning, Heat segregation** and media management
- Intelligent media management that **keeps settings ideal**
 to keep performance consistent.
- **Endurance** without latency penalty
- **FIPS 140** certification

4.8TBu, 9.6TBu, 19.2TBu capacity options with up to 3:1 compression
FCMs Implement Everspin’s STT-MRAM

- Technology BER and Endurance meets FCM design requirements
 - Component level qualification approved and validated by IBM component teams
- Meets performance requirements with persistence
 - Solves the power loss use case and data retention requirements
FCM Design – Block Diagram / Floorplan
ST-MRAM Persistent Memory Use Case
Power Loss Protection – IBM FCMs

- Write Cache / Data Buffer
 - Multi-levels for heat segregation / data streams
- Journaling Checkpoint
- RMW Buffer
- Persistent Memory Region
- State Dumps
- Trace Logs
- Stats
ST-MRAM Persistent Memory Use Case
Advantages for IBM FCMs

- Speed of MRAM allows for direct use as a write cache / data buffer
 - No requirement to destage on power loss to NAND
- Allowed for simplifications of some design points
 - Don’t need to use NAND space for data checkpoints, journals and logs. Can all be stored in MRAM
- Allows for ease of implementation of PMR
 - No requirement for building a journal or destage function for PMR, can reside directly in MRAM