SSD and Container Native Storage for High-Performance Databases

Earle F. Philhower, III
Sr. Technical Marketing Manager, Western Digital

August 2018
Databases ∩ Containers = Null Set?

\[\text{Integral(VMs } dt) = \text{DevOps(Containers)} \]

Software Defined Storage + Containers > SAN

\[\text{Lim Performance(CNS + SSD)} | DBs->128 \]

\[\text{Databases / (SSD + Containers)} = \infty \text{ Possibilities} \]

* But there *is* a study guide available at:
Databases ∩ Containers = Null Set?

Challenge: Databases in containers

- Software ate the world. Containers ate software...

- But the databases that containers rely on are still on dedicated hardware.
 - Performance
 - Persistence

Challenge: Integrate Containers and Database

- Enable DevOps advances for databases
- Provide persistent, high performance storage
- Remove need for database system silos
Integral(VMs dt) = DevOps(Container)

From VMs to Containers and DevOps

• VMs (Virtual Machines)
 – VMware®, Hyper-V, KVM, Xen
 – Emulate entire hardware and run full software stack
 • Full Operating System and support software!
 • One VM host could have 100 copies of the Linux® kernel active
 – Per-VM limits on CPU, memory, network, I/O
 – Maximizes isolation of apps

• Containers
 – Split a single OS image into multiple domains (containers)
 • Only one kernel (Windows, Linux) active
 – Each application or executable can have CPU, mem, etc. limits
 – Maximizes density of apps / hardware
 – “DevOps” focused, very fast to deploy and manage
SDS + Containers > SAN

Architecture for persistent storage in a unified cluster

- Software defined storage system (SDS) for persistence
 - Keep storage control and management in-cluster
 - Remove need for external persistent storage
 - Keep control in DevOps’ hands

- Run everything under Virtualization
 - KVM, VMware (this example), public cloud, etc.
 - One software-defined storage VM/node with SSD connection
 - Ensure appropriate CPU, memory, networking resources
 - One container node with ephemeral and SDS connections
SDS + Containers > SAN²

Red Hat® OpenShift and Ultrastar® SS200 Under VMware

- **Software**
 - VMware vSphere® virtualization management
 - Red Hat OpenShift Container Storage (OCS)
 - SDS = GlusterFS, optimized for containers
 - Red Hat OpenShift Container Platform (OCP)
 - Container orchestration
 - Oracle MySQL™
 - Running DVDStore2 Test (part of VMmark™ testbed)
 - I/O intensive, transactional operations
 - 3 SDS VMs

- **Hardware**
 - 9 HPE ProLiant Servers
 - 15 Western Digital Ultrastar SS200 SAS SSD (5 per SDS VM)
 - (also tested with 36 Ultrastar He10 HDDs)
Container Native Storage + SSD = f(ast)

System Diagram

HPE ProLiant DL380 Gen9 SFF
- 2x Intel® E5-2697A v4
- 256 GB of RAM
- 5x HGST Ultrastar® SS200 1.9T
- HPE SmartHBA H240ar

- OpenShift Network (10GbE)
- Storage Network (10GbE)

VMware vSphere
Red Hat OpenShift
Lim Performance (CNS + SSD) | DBs -> 128

Test Results

Transaction Time = 91ms
Databases / (SSD + Containers) = ∞ Possibilities

• Challenge: Integrate Containers and Database

• Solution: SDS with SSD in an integrated environment
 – Red Hat OpenShift Container Storage (OCS)
 – Red Hat OpenShift Container Platform (OCP)
 – Western Digital Ultrastar SSDs

• Benefits:
 – Enable DevOps for databases, with performance
 – Provide persistent, high performance storage
 – Remove need for database hardware silos
