Ultra-Low Resource FPGA implementation of Finite Alphabet Iterative Decoders

D. Declercq
B. Reynwar, V. Yella, B. Vasic and S. Planjery

Contact: declercq@codelucida.com
Website: www.codelucida.com
Low Resource vs. High Throughput

• Storage using 3D TLC / QLC flash requires LDPC ECC for the improved performance against BCH
• LDPC is especially important to improve the endurance and the robustness to retention
• Throughput requirements are only increasing: PCIe-gen3 (4GB/s) and PCIe-gen4 (8GB/s)

However
• Strong Error Correction requires more hardware resource
• Larger throughputs requires more hardware resource

LDPC solutions are usually too big to fit in FPGA based controllers
Vertically layered FAID decoding

FAID™: Finite Alphabet Iterative Decoding

- Iterative decoders with 3 bits messages belonging to \{-3, -2, -1, 0, +1, +2, +3\}
 - Low computational complexity
 - Low memory requirements

- Vertical column-wise scheduling for low memory and fast processing

- **Goal for this talk**: Propose specific FPGA implementation of FAID with extremely low-resource usage and high throughput
Why FAID have good ECC performance?

- Low precision iterative decoders tend to **limit** the ECC performance, both in the waterfall and Error floor regions.
- **Classical solution**: increase message precision, but with extra HW resource.
- **FAID approach**: low precision, but **optimize** the non-linear VN update rules to recover the performance loss.
Vertical Processing

- **Quasi-cyclic LDPC codes** - parity-check matrix defined by circulant blocks
- Process the $dv=4$ circulants blocks of each column **in parallel**
- Add **constraints in the LDPC code** such that no 2 blocks overlap in consecutive columns
Vertical Processing: column #1

Variable Node Processing: VNP

Check Node Processing: CNP
Vertical Processing: column #2

Variable Node Processing: VNP

Check Node Processing: CNP
Vertical Processing: column #3
Top Level Architecture

- QC-LDPC Parameters
- Main State Machine
- FAID Update Maps
- Input Control
- Check Node Processors [CNP]
- Barrel Shifters
- Variable Node Processors [VNP]
- Validation And Output
- Main Decoding Loop

- rate length
- optimized design
- optimized FAID maps
- channel values
- hard / soft bits from the flash reads
- stopping criterion
Specific FPGA Optimization

- Implementation of the FAID VNP as Look-up-Tables rather than Boolean circuit
 - reduce the Memory usage and the LUT usage

- Optimization of the pipelined architecture to maximize chip frequency
 - increase the Frequency

- Vertical layered decoding uses both deep and shallow memories. Optimization of the BRAM or LUTRAM implementation of the memories is crucial.
 - reduce the Memory Usage and increase Frequency
Pipeline Optimization @ 250Mz

Synthesis passes @250Mhz using 17 pipeline stages at specific location
Pipeline Optimization @ 500Mz

Synthesis passes @500Mhz using 33 pipeline stages at specific location
FPGA usage and frequency

- Synthesis on **Zync Ultrascale ZU7eg** (xczu7eg-ffvf1517-2-e):
 - specs of the chip: 230K LUT - 460K Flipflops - 312 BRAM
 - maximum Frequency for Bram access 637Mhz
- 4kB QC-LDPC / Rate=0.89
 - synthesis passes **up to 600Mhz** (max. chip frequency)
 - very low resource usage: < 7% LUT and < 11% BRAM
 - **Tradeoff** between BRAM and LUT usage

<table>
<thead>
<tr>
<th></th>
<th>High BRAM</th>
<th>Low BRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUT</td>
<td>14K</td>
<td>19K</td>
</tr>
<tr>
<td>FF</td>
<td>13K</td>
<td>19K</td>
</tr>
<tr>
<td>BRAM</td>
<td>85</td>
<td>33</td>
</tr>
</tbody>
</table>

@ 350Mhz \(T = 1.23 \text{ GB/s} \)
Usage vs. Coding Rate

- Results @350Mhz for T = 1.23 GB/sec
- LUT usage is constant whatever the rate
- Only slight increase in BRAM utilization
- Allows multi-rate implementation at the cost of a few extra BRAM
- 3% more BRAM for each additional rate
Usage vs. Block Length

- Results @350Mhz for T = 1.23 GB/sec
- LUT usage is almost constant for all lengths
- Using small sizes requires less BRAM
Usage vs. Throughput

- Results @500Mhz
- 4GB/s throughput with 15% of LUT, 45% of the BRAM on XILINX ZU7eg
- LUT usage grows linearly
- At a given throughput, single core instance is always beneficial compared to multiple cores

@5.2 GB/s: 8% LUT saving, 41% BRAM saving
Conclusion

- Proposed FAID LDPC decoder **optimized for FPGA**
 - ✓ Very low resource usage
 - ✓ Very high frequency
- Enable **PCle throughputs** with low cost FPGA controllers
- Performance have been validated on actual **3D TLC NAND** Flash samples (in-house study),

Demonstration at the Booth #856
multi-core solution @500Mz on a Xilinx ZU7ev chip at T=6GB/s.