Introducing **DPU:**
Data-storage Processing Unit

Placing Intelligence in Storage

Qing Yang 杨庆
Founder & CSO, Shenzhen Dapu Microelectronics Ltd Co.
Distinguished Engineering Professor, IEEE Fellow
University of Rhode Island
Data Explosion!

Δ_{18m} = \sum_{-\infty}^{\infty}
Ali-Cloud last Year: 5 Times!
Data Explosion!

Enterprise SSD Market

Worldwide Enterprise PCIe SSD Shipments (M000)

Rapid Advances of Storage Technologies
Data Growth + Media Tech

✧ **Big Data, Cloud**: Data Explosion
 - Applications Demand Fast Data---
 High Performance, Secure, Reliable, Recoverable

✧ **Emerging Device Tech, more Cost-Effective**:
 - Flash, PCM, MRAM, RRAM

These placed great challenges to the storage control and management

Existing storage controllers are far behind!
History of Computing

Decades ago, Displays were controlled by CPU/MCU
➢ Resolution, color, pixels increased greatly
➢ CPU/MCU could no longer control modern displays
➢ As a result: GPU was born and developed

Today
GPU Plays a revolutionary role in computing!

We Believe
Storage control of big data has come to a historical point!
CPU/MCU can no longer manage exponential growth of data and a variety of storage media technologies:
Therefore, We introduce the first ever:

Data-storage Processing Unit: DPU
Machine learning optimizing I/O & Prolonging storage life

Data analysis and encryption with hardware inside storage

Greatly reduce total amount data over I/O bus.

Improving data throughput rate
Improving the performance of the entire system
Major Functions in DPU

- **Media Managements**
 - Flash Control
 - Machine Learning of I/O Patterns
 - Minimizing Erasures & Adaptive RAID

- **Advanced Data Analytics**
 - Processing in Storage: PIS
 - Placing data intensive computation closest to where data is stored

- **Storage Architecture**
 - Hierarchy and Tiering:
 - Dedupe, Snapshot, Replication, and Failure Tolerance
 - Distributed SAN, E-W connectivity, NVMe over the fabric
Storage Media Management

- **Physical Properties of Flash Memory**
 - Reads are faster than writes
 - Limited erase cycles
 - No in place write → GC, WL

- **Write Amplification Problem**
 - Slow down I/Os, Increase wearing, and hogging resources

<table>
<thead>
<tr>
<th>Valid page</th>
<th>To be erased block</th>
<th>A new block</th>
</tr>
</thead>
<tbody>
<tr>
<td>V I I V I I I V</td>
<td>V V V V V V V V V</td>
<td>V V V V E E E E</td>
</tr>
<tr>
<td>I I I I I I V I I</td>
<td>E E E E E E E E E</td>
<td>E E E E E E E E E</td>
</tr>
<tr>
<td>I I I I I I V V I</td>
<td>E E E E E E E E E</td>
<td>E E E E E E E E E</td>
</tr>
</tbody>
</table>
Reinforcement Learning

❖ Classify I/Os into groups of similar or same rewrite intervals
 ➢ Features and attributes
 ✓ {R/W LBA, Timestamp, Re-reference interval, Recency, feedback, GC information}
 ➢ Pages of the same class will be written in one block
 ✓ High performance, minimal WA

❖ Recognize I/O Patterns at Production Site
 ➢ Train and learn I/O behaviors after deployment
 ➢ Optimization kicks in after a week or so
 ➢ Adapt to any environment and applications
Measured Erase Count Results

Normalized Erase Counts

Factor

HMO MDSO PROJ0 PROJ1 RSRCH0 SRC1-0 STG0 TSO USR2 WDEVO WEB2

Random ML Normal
Major Functions in DPU

- Media Managements
 - Flash Control
 - Machine Learning of I/O Patterns
 - Minimizing Erasures & Adaptive RAID

- Advanced Data Analytics
 - Processing in Storage: PIS
 - Placing data intensive computation closest to where data is stored

- Storage Architecture
 - Hierarchy and Tiering
 - Dedupe, Snapshot, Replication, and Failure Tolerance
 - Distributed SAN, E-W connectivity, NVMe over the fabric
ADA: HW Search & Sort in DPU

❖ Over 80% of Data are Unstructured
 ➢ Process of text data is critical
 ➢ Software scanning is slow

❖ Research on Accelerators for Text Search
 ➢ Maximizing DRAM bandwidth
 ➢ I/O is still a burden

❖ Sorting & KV Store
 ➢ HW Sorting
 ➢ Graph Processing
ADA1: REGISTER in DPU

• Regular Expression Grabbing Inside STORage
 ➢ HW search in SSD where data is stored
 ➢ Only results or related files are sent to the host
ADA2 In-storage sort module

Divide and Conquer HW Sort Module

Unsorted data input:

- Linear-time Sorter 0
- Linear-time Sorter 1
- FIFO merger 1
- FIFO merger 2
- FIFO merger 3
- Chunk sorted output

A0 A1 A2
B0 B1 B2
ADA2: Sort performance

Single core speedup: 4.6~6x.
Multi core speedup: 2~2.8x
ADA3: Graph Preprocessing in DPU

Minimum Spanning Tree (MST):

MST calculation:
1. Sort the entire edges
2. Edge connection
Post processing on single core

10, 7, 6, 5
21, 12, 11, 3
13, 10, 8, 7
22, 4, 4, 1
39, 23, 32, 5
12, 8, 7, 6
40, 33, 21, 8
24, 23, 20, 1
Post processing on single core

10, 7, 6, 5
21, 12, 11, 3
13, 10, 8, 7
22, 4, 4, 1
39, 23, 32, 5
12, 8, 7, 6
40, 33, 21, 8
24, 23, 20, 1
Post processing on single core

10, 7, 6, 5
21, 12, 11, 3
13, 10, 8, 7
22, 4, 4, 1
39, 23, 32, 5
12, 8, 7, 6
40, 33, 21, 8
24, 23, 20, 1
Post processing on single core

10, 7, 6, 5
21, 12, 11, 3
13, 10, 8, 7
22, 4, 4, 1
39, 23, 32, 5
12, 8, 7, 6
40, 33, 21, 8
24, 23, 20, 1

Finished build B-tree of chunk node

Trim direction
Post processing on single core

Trim form B-tree by in-order traversal:
Remove 1 and connect MST
Post processing on single core

10, 7, 6, 5
21, 12, 11, 3
13, 10, 8, 7
22, 4, 4
39, 23, 32, 5
12, 8, 7, 6
40, 33, 21, 8
24, 23, 20, 1

Trim direction

Insert next chunk head
Post processing on single core

10, 7, 6, 5
21, 12, 11, 3
13, 10, 8, 7
22, 4, 4
39, 23, 32, 5
12, 8, 7, 6
40, 33, 21, 8
24, 23, 20, 1

Trim form B-tree by in-order traversal:
Remove 1 and connect MST
Post processing on single core

10, 7, 6, 5
21, 12, 11, 3
13, 10, 8, 7
22, 4, 4
39, 23, 32, 5
12, 8, 7, 6
40, 33, 21, 8
24, 23, 20

Trim direction

Insert next chunk head
Post processing on single core

Trim form B-tree by in-order traversal:
Remove 3 and connect MST
Post processing on single core

B-tree stops when traverse all the nodes
MST performance

96-cores CISC vs single-core CPU baseline: 11.47~17.2x
ADA4: HW Deserialization

❖ Future world will be sensor driven world
 ➢ Huge amount of sensing data files
 ➢ Numbers are stored in readable and exchangeable formats: ASCII, Unicode etc.

❖ To Process Data Using Computers
 ➢ Readable data need to be converted to binary
 ➢ Host CPU is very inefficient
 ➢ Time Consuming, up to 60% of Total Processing Time
Performance of DPU vs. Server CPU

Throughput of Server

Throughput of DPU

JASPA B-tree Breadth first Search0 Breadth first Search1 LU Decomposition1 LU Decomposition2 LU Decomposition3 LU Decomposition4 hybridsort
Major Functions in DPU

- **Media Managements**
 - Flash Control
 - Machine Learning of I/O Patterns
 - Minimizing Erasures & Adaptive RAID

- **Advanced Data Analytics**
 - Processing in Storage: PIS
 - Placing data intensive computation closest to where data is stored

- **Storage Architecture**
 - Hierarchy and Tiering
 - Dedupe, Snapshot, Replication, and Failure Tolerance
 - Distributed SAN, E-W connectivity, NVMe over the fabric
IST: Intelligent Storage Tiering

- **Media:** Flash, PCM, MRAM, Memristor etc:
 - Different Speed
 - Different Cost

- **What Do Users want:**
 - \downarrow & Speed \uparrow & Power \downarrow & Ease of use & Reliability \uparrow

IST in DPU
Distributed SAN Functions in DPU

❖ **East-West Connectivity**
 ➢ Support Distributed SAN with HW
 ➢ NVMe over the fabric

❖ **DPU-Link**
 ➢ Allow customized HW/Chip to be connected
 ➢ AI training and inference made fast

❖ **Support Multiple Protocols**
 ➢ iSCSI, FC, NVMe over the fabric
 ➢ NAS card
 ➢ Snapshot, Replication, Recovery, and more
Summary and Conclusions

A New Concept for Next Generation Storage
Proven Advantages on Current SSDs

- Optimize Media
- Better I/O
- Analytics PIS
- QoS Apps

DPU For Storage
Thank You!

Q & A