Emerging NVM Features

For Emerging NVM Interface (I/F)s
Thomas Won Ha Choi
SK hynix
Introductions

- Thomas Won Ha Choi – Senior Engineer, SK hynix
 - DRAM Server Product Planning
 - Specialties:
 - Standardization (JEDEC, Emerging Open Interconnect)
 - Future Memory Pathfinding / System-level Performance Analysis
 - Persistent Memory (PM) Interfaces
 - B.S. in Computer Sciences from Univ. of Texas at Austin
 - M.S. in Computer Engineering from Univ. of Southern California
 - Ph.D. in Computer Engineering from North Carolina State Univ.
 - Worked in Advanced Design / Product Planning at SK hynix since 2012
Objectives of Emerging NVM HW

- “Storage Class” High Capacity
- Persistent Memory (i.e. byte-addressable)
Key Features of Emerging NVM HW

- Persistent Features & Memory Protocol on High Speed I/F
- Form factors may vary by customer requirements

<table>
<thead>
<tr>
<th>Features</th>
<th>Examples</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extended addressing</td>
<td>XADR</td>
<td>NVDIMM-P: up to 40-bit space</td>
</tr>
<tr>
<td>Non-deterministic, transactional protocol</td>
<td>Handshaking signal, write credit, status check</td>
<td>NVDIMM-P: integrated in DDR4/5 protocol</td>
</tr>
<tr>
<td>Byte-addressable Persist Command</td>
<td>FLUSH, PWRITE</td>
<td>Flush supported in various emerging NVM I/Fs</td>
</tr>
<tr>
<td>RAS related</td>
<td>Error correction & reporting, media management</td>
<td>Media specific features are agnostic to I/F</td>
</tr>
<tr>
<td>Power/thermal management</td>
<td>Power throttling, interrupt, failure & reset handling</td>
<td>May be agnostic to I/F</td>
</tr>
<tr>
<td>Security</td>
<td>Encryption</td>
<td>May be agnostic to I/F</td>
</tr>
</tbody>
</table>
Choosing I/Fs and Form Factors

- Customer demand will drive the leading I/F & Form Factor (FF)s
 - Based on cost, scaling (capacity, BW, power)
 - I/F choices:
 - JEDEC NVDIMM-P (DDR5)
 - Emerging Open Interconnect (CCIX, Gen-Z, OpenCAPI)
 - Proprietary I/F
 - FF choices:
 - DIMM
 - SSD (U.2., EDSFF, etc.)

Less per-bit cost than DRAM DIMMs, higher bandwidth, but less tolerable power budget (15~18W) and more stacking required for capacity scaling.

More tolerable power budget (~25W), less stacking required for capacity scaling, but more per-bit cost than NAND SSDs.
Example I/F: NVDIMM-P

- Non-deterministic, transactional PROTOCOL on DDRx bus
- Expanded capacity:
 - Only 2 clock cycle added to existing read/write command (ex: DDR5)
- Transaction Flow:
 - Read: Read command -> Read ready -> SEND data -> data out
 - Write: Write command if enough write credit -> handshaking only for persistent writes
- Guaranteeing data preservation
 - Persistence command, RAS
 - Security (TBD)
NVDIMM-P Persist Command

- PWRITE or FLUSH command with non-deterministic, transactional protocol
- FLUSH overrules prior PWRITEs
NVDIMM-P RAS Features

- Status of NVDIMM-P can be polled at command level (SEND command)
- Other RAS features: channel ECC, IOP, UNMAP

Command

SEND

DQ

- tSEND

ECC + Metadata

- Normal read data OR status metadata (PWRITE related, IOP related, etc.)
- Check Bit (CB) not stored in NVDIMM-P media
- 1-Symbol (8-bit) correct, 2-symbol detect
- Basic metadata (RID, Write credit, user metadata, etc.)
NVDIMM-P Form Factor

- Expected to follow 288-pin LRDIMM form factor (with RCD, DB)

- Two separate trainings conducted: media controller & media:
 - Host is still expected to have control of media controller training
 - Control word combines two separate registers currently in DDRx:
 - RCW (Register Control Word) in RCD
 - MR (Mode Register) in media component

- Power requirement: under 15W (current R/LRDIMM budget)
 - Some argue that up to 18W is acceptable
Conclusion

- Emerging NVM HW targets high capacity and persistent memory.

- Emerging NVM I/F standardization efforts are currently defining persistent memory command, RAS, power/thermal management, and security features.

- Become more active in standardization efforts for more exciting future, including JEDEC NVDIMM-P!
Thank You!

For more information, contact:
Thomas Won Ha Choi (wonha.choi@sk.com)