Gen-Z Technology: Enabling Memory Centric Architecture

Kurtis Bowman
President of the Gen-Z Consortium
Director of Technologies & Concepts at DellEMC, Server Office of the CTO
Challenges In The Data Center

- More data than ever
 - 50 billion IoT devices by 2020
 - 4TB of data per day per autonomous vehicle
 - 160ZB of data a year by 2025
- CPU performance improvements have slowed
 - From 50% generation to generation to only 20%
- Managing resources
 - Key resources are trapped in today’s servers
 - Resources are stranded when a failure occurs
- Maintaining a secure environment
 - The global average cost of a data breach is $3.86 million
Why Gen-Z?

Businesses’ Need to ‘Monetize’ Data

Big Data
AI
Machine Learning
Deep Learning
BI

Need Answers ... FAST!

Value of Analyzed Data

- Businesses demanding real-time insight
- Increasing amounts of data to be analyzed
CPU Performance Improvements Have Stalled

![Graph showing the decline in CPU performance improvements and the increase in cost over time.]

Source: Computer Architecture: A Quantitative Approach by Hennessy and Patterson

Driving new Architectures
Where & how we spend transistors is changing

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TSMC</td>
<td>25HP</td>
<td>20nm</td>
<td>14nm</td>
<td>10nm</td>
<td>7nm</td>
<td>7nm</td>
<td>7nm</td>
<td>7nm</td>
<td>7nm</td>
</tr>
<tr>
<td>SAMSUNG</td>
<td>20LP</td>
<td>14LP</td>
<td>10LP</td>
<td>7nm</td>
<td>7nm</td>
<td>7nm</td>
<td>7nm</td>
<td>7nm</td>
<td>7nm</td>
</tr>
<tr>
<td>AMD</td>
<td>28nm</td>
<td>22nm</td>
<td>14nm</td>
<td>10nm</td>
<td>7nm</td>
<td>7nm</td>
<td>7nm</td>
<td>7nm</td>
<td>7nm</td>
</tr>
<tr>
<td>INTEL</td>
<td>32nm</td>
<td>22nm</td>
<td>14nm</td>
<td>10nm</td>
<td>7nm</td>
<td>7nm</td>
<td>7nm</td>
<td>7nm</td>
<td>7nm</td>
</tr>
</tbody>
</table>

*Note: Production and qualification start is typically 1 year ahead.

CPU Competition

Storage Class Memory

SCM: PCM, 3DxPt, STT-MRAM, ReRAM, NRAM

SmartNICs

FPGAs

Specialty Processors

GPU
Memory and Storage are Converging

With memory/storage convergence, memory semantic operations become predominant (volatile & non-volatile)
Gen-Z Allows Memory Innovation

- Processor
 - 4-8 Memory Channels
 - 17-25 GB/s / Channel
 - 288 pins / DIMM
 - Synchronous Interface
 - Gen-Z Logic
 - Media Module
 - DRAM
 - RAM
 - Asynchronous Interface
 - Low Latency, High-performance
 - Split Memory Controller
 - Processor is media agnostic
Gen-Z Connects Disaggregated Components

• **High Performance**
 - High Bandwidth, Low Latency, Scalable
 - Eliminates protocol translation cost / complexity / latency
 - Eliminates software complexity / overhead / latency

• **Reliable**
 - No stranded resources or single-point-of-failures
 - Transparently bypass path and component failure
 - Enables highly-resilient data (e.g., RAID / erasure codes)

• **Secure**
 - Provides strong hardware-enforced isolation and security

• **Flexible**
 - Multiple topologies, component types, etc.
 - Supports multiple use cases using simple to robust designs
 - Thorough yet easily extensible architecture

• **Compatible**
 - Use existing physical layers, no OS modifications required

• **Economic**
 - Lowers CAPEX / OPEX, unlocks / accelerates innovation
Disaggregated infrastructure benefits

- Compose servers with resources app requires
- Unlock trapped resources
- Avoid overprovisioning
- Purchase resources independently

INCREASE AGILITY
- Increase RAS

OPERATE EFFICIENTLY
- Repurpose retired resources

UNLOCK VALUE
- Technologies can evolve – and deployed independently
Security Is Part Of The Gen-Z Fabric

• In today’s environment every device is a potential threat
 • Inflight attacks, denial of service attacks, packet injection attacks, time manipulation attacks, and more

• Gen-Z has the tools needed to handle these threats
 • Data encryption and cryptographically-secure message authentication
 • Tight timeout domains with immediate response scheduling
 • Access Keys (A-Key) component group-level access control
 • Region Keys (R-Key) page level access control
 • Replay attack detection
 • Packet destruction detection
 • Extreme packet injection rate protection
 • Data destruction protection
 • Resource exhaustion protection
Open Consortium With Broad Industry Support

Consortium Members

Allion Labs	IDT
Alpha Data	IntelliProp
AMD	Jess Link
Amphenol	Keysight
ARM	Lenovo
Avery Design Systems	Lotes
Broadcom	Luxshare-ICT
Cadence	Mellanox
Cavium	Micron
Cisco	Microsemi
Cray	Mobiveil
Dell EMC	Molex
Everspin	NetApp
ETRI	Nokia
FIT	Oak Ridge Natl Labs
Google	PLDA Group
Hirose	Qualcomm
HPE	Red Hat
Huawei	Samsung
IBM	Seagate
Senko Advanced Comp	Simula Research Lab
SK hynix	Smart Modular
Smart Modular	Spin Transfer Tech
Spin Transfer Tech	Teledyne LeCroy
Toshiba Memory Corp	TE
Univ. New Hampshire	VMware
Western Digital	Xilinx
Yadro	Yonsei University

*Board member
*Associate member