Enterprise Flash Storage
Annual Update

Flash, It’s not just for tier 0 anymore
Or
Flash is the new black

Santa Clara, CA
August 2018

Howard Marks
Chief Scientist
Your not so Humble Speaker

- 30+ years of consulting & writing for trade press
- Occasional blogger at TechTarget
- Chief Scientist DeepStorage, LLC.
 - Independent test lab and analyst firm
- Cohost Greybeards on Storage podcast

Hmarks@DeepStorage.Net @DeepStorageNet
Agenda

- A brief history lesson
- The shift from SSD to NVMe
- NVMe over fabrics the new lingua franca
- A look in the crystal ball
A Decade of Enterprise Flash

2007
- Rackmount SSDs
- Texas Memory
- Violin Memory
- Fast but niche

2010
- SSDs in DISK arrays
- High cost
- Endurance fears
- Hybrids emerge

2014
- Flash understood
- All Flash Arrays
- Costs close

2018
- Flash is mainstream
- Full data services & data reduction
- Cost effective for most applications
Flash is just the default

- All flash ~$8bil/yr w/12% projected growth
- Disk is still cheaper
 - But being reserved for:
 - Secondary
 - Rich media
- Users are over endurance & deduplication fears
- Shift back to full featured arrays from purpose built AFA
The Great Flash Shortage of 2016-7

- 2008-2015 SSD $/GB −30%/yr
- 2016-2018 maybe 30% total
- Last year I said “Relief to come late 2018/19”
- Supply is easing
 - 96 layer QLC
 - Process improvements
 - New fabs
- Expect 30+% CAGR
Enterprise SSD Evolution

- Further fragmentation
 - Optane/Samsung Z-NAND NVMe
 - 100TB 6gbps SATA
- U.2 across server vendors
 - New form factors:
 - Samsung NGSFF
 - Intel Ruler
Solid State Drive to Solid State Device

- Dropping the HDD form factor
 - M.2 for boot
 - Ruler/NGSFF for hot-swap
 - Better cooling and density
- PCIe replaces SAS/SATA
- PCIe Switch chips vs SAS Expanders
- NVMe replaces SCSI as lingua franca
 - Over PCIe locally
 - Over fabrics
PCIe Advances

- **PCIe 4.0**
 - Doubles bandwidth/lane to 2GBps
 - Driven by 100Gbps Ethernet & NVMe
 - Power systems shipping now
 - x86 Next server chipset release

- **PCIe 5.0 close on its heals**
 - .7 version issued May 2018
 - Adoption planned Q1 2019
 - 400Gbps Ethernet \(\approx\) x16 slot
 - Servers and such 2020?

<table>
<thead>
<tr>
<th>Spec Date</th>
<th>Raw Bandwidth per lane</th>
<th>x8 Gbps</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCIe 1</td>
<td>2003</td>
<td>2.5G T/s</td>
</tr>
<tr>
<td>PCIe 2</td>
<td>2007</td>
<td>5.0G T/s</td>
</tr>
<tr>
<td>PCIe 3</td>
<td>2010</td>
<td>8.0G T/s</td>
</tr>
<tr>
<td>PCIe 4</td>
<td>2017</td>
<td>16GT</td>
</tr>
</tbody>
</table>
NVMe 101

- Gen1 and 2 PCI SSDs
 - ACHI (SATA command set)
 - Propreataary (Fusion-IO, Verident) with heavy software
- Enter NVM Express
 - A new software protocol for non-volatile memory access
- Lower compute overhead than SCSI
- 64K queues of 64K entries vs SCSI 1 queue of 32 entries
NVMe = Lower Overhead & Latency

- By 2016 NVMe is leading from desktop M.2 to the datacenter
- But limited to internal SSDs
NVMe Over Fabrics (NVMEoF)

- Extends/encapsulates NVMe semantics over
 - Ethernet with RMDA
 - Fibre Channel
 - Infiniband (no products yet announced)
 - TCP
- Adds name spaces and discovery
- 10-50\(\mu\)sec protocol and network overhead
NVMeOF Ethernet Options

- RDMA over Converged Ethernet (ROCE)
- iWARP (Internet Wide-area RDMA Protocol)
- RNICs generally support ROCE or iWARP
NVMe Over Fibre Channel

- Fibre Channel
 - Zero copy vs RDMA
 - Flow and congestion control
- Gen5 (16) and Gen6 (32Gbps) Fibre Channel
- One fabric for SCSI and NVMe
- Keeps storage network in storage domain
- The safe move in enterprise
NVMe over TCP

- Encapsulates NVMe verbs in TCP
- Relies on TCP low control
- NIC offload optional
- No switch config requirements
- Nominal latency addition
- Supporters:
 - SolarFlare
 - Cavium
 - Toshiba
- Greybeards on Storage
NVMeOF Pioneers

- Apeiron – 40Gbps Ethernet switch in JBOF
- E8 – Dual controller array – basic services
- Mangstor – x86 NVMEoF target
- Excellero – Low CPU SDS, RDMA
Pure FlashArray///x

- Replaces //m SAS SSDs with NVMe flashmodules
- Expansion via SAS or NVMEoF JBOF
- NVMEoF target on 40Gbps Ethernet
- Full services
Dell/EMC PowerMAX

- Should end the “designed from scratch for flash” argument
- All the Symetrix/VMAX software goodness
- NVMe media
- NVMe over fabrics promised
- Scaleout x86 & FICON
NetApp and IBM Go NVMEoFC

- **IBM FlashSystem 9100**
 - 24 flash modules (19.2TB, 384TB net)
 - 16Gbps FC, NVMEoFC*
 - SVC based services

- **NetApp A series AFF**
 - A800 – 48 SSD slots
 - Sub 200μsec latency, 11 millionIOPS
 - Data OnTap services
Standards Progress

- **2014**
 - NVMe™ Base
 - NVMe™ 1.2 – Nov ’14
 - Namespace Management
 - Controller Memory Buffer
 - Host Memory Buffer
 - Live Firmware Update
 - NVMe-oF™ 1.0 May ’16
 - Transport and protocol
 - RDMA binding

- **2015**
 - NVMe™ 1.2.1 May’16

- **2016**
 - NVMe™ 1.3
 - Sanitize
 - Streams
 - Virtualization

- **2017**
 - **NVMe-oF™-1.1**
 - Enhanced Discovery
 - TCP Transport Binding

- **2018**
 - NVMe™ 1.4+
 - IO Determinism
 - Persistent memory Region
 - Multipathing

- **2019**
 - NVMe-MI™ 1.0 Nov’15
 - Out-of-band management
 - Device discovery
 - Health & temp monitoring
 - Firmware Update
 - NVMe-MI™ 1.1
 - SES Based Enclosure Management
 - NVMe-MI™ In-band
 - Storage Device Enhancements

Legend:
- Released NVMe™ specification
- Planned release

* Subject to change
NVMe JBOFs Emerge

- Today’s JBOFs are x86 servers
 - Eg: Toshiba KumoScale
 - High flexibility
 - High cost

- NVMEoF ASICs
 - Vastly reduce costs
 - Sampling from
 - SolarFlare
 - Xilinx
 - Kazan Networks
 - Attala Systems
Kaminario K2 Composeable

- NVMEoF
 - Controller to JBOF
 - Host to array (opt)

- Dynamically assign controllers and flash to virt array
Persistent Memory Now GA

- Scaleable Xeon servers support NVDIMM-N
- Good for software delivered storage
 - Small (8-16GB)
 - Expensive (2-3X DRAM)
- Full OS/Hypervisor Support
 - Windows
 - vSphere
 - Linux
NetList’s HybriDIMM

- Combines DRAM-Flash
- Conceptually like Diablo/Sandisk UltraDimm

- Access:
 - DRAM as std memory
 - Flash w/DRAM buffer as Block storage
 - Flash as persistent memory via Linux Library
 - No special BIOS support needed
 - 128-512GB
Crystal ball section
The Future

- **All PCIe NVMe storage systems**
 - As conventional storage
 - With memory interfaces

- **Next-gen memory (PCM, 3d Xpoint, Etc)**
 - First as write cache in SSD
 - Later as memory
 - Taking a bit longer than expected

- **More persistent memory as memory**
 - Needs application support ala SAP Hana
Storage Class Memory

- As well defined as Software Defined
- For me:
 - Inherently persistent
 - Latency between DRAM and NAND Flash
 - Addressable as memory
 - Not SSD, not NVMe
 - Capacity 4-∞X RDIMM
- Defines material AND implementation
Optane DIMMs Coming Soon

Big and Affordable Memory 128, 256, 512GB
High Performance Storage DDR4 Pin Compatible
Direct Load/Store Access Hardware Encryption
Native Persistence High Reliability

NOW SHIPPING SAMPLES BROAD DEVELOPER ENGAGEMENT
In Memory Databases Today

- All database operations performed in RAM
- Data replicated across nodes (x86)
- AFA/HCI back end for persistence
 - Snapshots
 - Transaction Logs
 - Playback in case
- On write:
 1. Replicate to 1-n nodes
 2. Write to persistent log (typically AFA)
 3. ACK
In Memory Database with SCM

- **Much larger capacity/node**
 - 512GB vs 64GB/DIMM
 - 10X latency (SWAG)
- **Lower cost /GB**
 - 2-10X we guess
 - More vs 128GB LRDIMMs
 - 3X cost of 64GB
- **ACK after n-node write**
 - Can be RDMA write
 - Data now persistent
 - Log writes can be aggregated, async
Relative Memory Costs

- DRAM: 1
- Optane (P905): 0.12
- Optane (P4800X): 0.41
- NVMe Flash: 0.07
Thank you.
NVMe™ JBOF System Reference Design

1. NVMe JBOF controller
2. Solarflare soft NIC services
 - Over 2,000 vNICs per NIC
 - Hardware firewalls
 - Kernel bypass for acceleration
 - 100% packet surveillance
 - NVMe protocol processing
3. NVMe SSD
4. NVMe SSD tray
5. Just add your storage software stack here

Xilinx and Solarflare have partnered to create a NVMe Just-a-Bunch-of-Flash reference design which makes it quick and easy for storage vendors to perform proof-of-concept on a storage software stack, or go into production with a high-performance flash subsystem with a full suite of services for NVMe fabrics.