Security for Code and Data Protection in Embedded Systems

Grady Lambert
Director of Business Development
Motivation

- Embedded PCs are not exempt from security threats
- Not “if”, “when”
Embedded Computer (Classic)

- No security needed or “highly secure”
Evolved from consumer PC. No security
- System Design Goal: “Controlled Permeability”
Flash Memory Design: “Controlled Permeability”
Approaches

- **Software**
 - Standard
 - Vendor Commands

- **Software & Hardware**
 - AES, TCG Opal
 - TPM
Software - Standard

- Protection: None (No) or Total (R/W), Erase
- Ex: ATA Security
 - Host Requirements: Minimal, BIOS support
Software – Proprietary

- Protection: None (No), Read-Only (W), Total (R/W), Erase
- Ex: Swissbit
 - Host Requirements: Minimal, boot code development
Ex: ATA Security, Proprietary, or TCG Opal (SED)
Software & Hardware – TCG Opal

- Requires AES 128/256
- Standard, but with ranges
Software & Hardware – TCG Opal

- Cryptographic erase (fast)
- Challenge: Complex standard, limited BIOS support
Software & Hardware - TPM

- Hardware based protection and key store
- With or without AES
- True random number generator
Application – Use Case (1)

- Platform: Body Worn Camera
- Protection: Data
 - Finder of lost camera cannot access (view) data and cannot change data
- Solution:
 - Swissbit DP uSD Card with file encryption mode – secure recording
Application – Use Case (2)

- Platform: Cash Register
- Protection: Data
 - WORM recording with digital signature (audit trail)
 - Finder of lost card cannot change data
- Solution:
 - Swissbit WORM card (write once – read multiple) with hash chains and optional digital signature
Application – Use Case (3)

- Platform: Industrial PLC
- Protection: License Key
 - Host functionality unlocked with key in SSD
 - Key can't be cloneable and must be unique
- Solution:
 - Swissbit uSD cards, maintain the Key in an onboard Secure Element (SE)
Application – Use Case (4)

- **Platform**: IoT Gateway
- **Protection**: Code
 - Prevent unauthorized manipulation and duplication
- **Solution**:
 - Swissbit PE microSD with full encryption and protection profile (access rules)
Conclusion

- Embedded Systems (and the SSD’s used to realize them) present an ever increasing risk of being a TARGET due to the markets they serve (e.g., Energy, Aviation, Defense, etc.)
- As Embedded Systems continue to evolve in complexity and connectivity the ATTACK surface becomes larger and more vulnerable.
- Security SOLUTIONS realized at the SSD level can address a wide array of use cases (e.g., Trusted Boot, Data Protection, SW License Monetization, Audit Trails, Counterfeit Protection, etc.)
- Swissbit has a team of Security Storage EXPERTS ready to support your Embedded Systems Design needs.
Questions?

Grady Lambert - Director of Business Development
Swissbit
grady.lambert@swissbit.com