3D NAND - Data Recovery and Erasure Verification

Robin England
Hardware Research & Development Team Lead
The Causes of SSD Data Loss – What can go wrong?

- **Logical Damage**
 - Data accidentally deleted, file system corrupted

- **Physical Damage**
 - Liquid, fire, physical stress

- **Electronic components**
 - Active and passive component failure

- **Firmware**
 - Main firmware cannot be loaded into memory from NAND reserved blocks

- **System Area**
 - Data tables corrupt or fail checksum
 - Improper shutdown caused loss of valid context / state information
NAND’s Challenges and Controller’s Solutions

- Physical data in NAND is not in its original format.
- Need to reverse controller’s processing to restore original logical data

- NAND has undesirable characteristics
- Controller must mitigate these through flash management techniques and Flash Translation Layer

Increase in BER
- Charge decay
- Inter-cell interference
- Read disturb
- Finite program-erase lifetime (write endurance)

Reduce bit errors
- Error correction (ECC)
- Data scrambling / encryption
- Wear-levelling

Others
- slow write-cycle
- block level only erase

Others
- Data striping
- Logical to physical (L2P) mapping
- Page & block management

Array of NAND Flash Memory “Chips”
SSD controller
SSD Controller Recovery versus Chip-Off Recovery - Overview

Overview

- Transient firmware module
 - Error-correction
 - Descrambling / decryption
 - Undo data striping
 - Undo L2P mapping
 - Undo wear-leveling

- Special controller firmware
 - Error-correction
 - Descrambling / decryption
 - Undo data striping
 - Undo L2P mapping (possibly)
 - Undo wear-leveling

Data out

- Ontrack hardware & software processes physical NAND data
 - Error-correction
 - Descrambling / decryption
 - Undo data striping
 - Undo L2P mapping
 - Undo wear-leveling

Data out

(Some external processing may still be required)
SSD Controller Recovery versus Chip-Off Recovery - Comparison

Advantages of Controller Recovery

- No need to heat NAND
- Faster recovery turnaround
- Easier - some / all processing (often) done for us by controller

Advantages of Chip-Off Recovery

- None of the NAND is hidden from us
- We get a faithful copy of physical data
- Gain knowledge of controller internal processes
- Recovery still possible if:
 - controller not functioning
 - no special firmware available
 - transient upload not supported by controller
 - Bad NAND element
 - SSD firmware damaged beyond repair
- Garbage collection / re-allocation is not changing flash content
The “Chip-Off” Recovery Process

- Remove NAND
 - Minimise heat during removal (or use milling) and re-ball ing
 - Avoid damage to package / pads

- Read NAND
 - Socket, pin-out (interface)
 - Logical addressing scheme (page, block, plane, die)
 - Command set
 - Use voltage control and read-retries (special features)
 - Error-correction

- Extract (re-assemble logical data copy)
 - Deal with striping, scrambling, decryption, L2P mapping etc..
 - Use information within SA where possible / applicable
NAND Cell Data Density (SLC, MLC, TLC and QLC)

SLC = Single-Level Cell:
- 1 data bit represented per cell

MLC = Multi-Level Cell:
- 2 data bits represented per cell

TLC = Triple-Level Cell:
- 3 data bits represented per cell

QLC = Quad-Level Cell:
- 4 data bits represented per cell

- As cell data density increases:
 - Storage capacity, data access latency increases.
 - Write endurance and data retention decreases.
 - Bit Error Rate (BER) increases as does the need for Read-Retry and better ECC algorithms.
MLC, TLC and QLC NAND – Error Correction (ECC)

Read-Retry and ECC cycle

- **BCH** (Bose–Chaudhuri–Hocquenghem)
 - hard-decision decoding with read-retry
- **LDPC** – (Low-Density Parity Check)
 - supports soft-decision decoding with read-retry
- **Adaptive LDPC**
 - code changes throughout life of NAND
 - smaller (weaker) ECC when new
 - larger (stronger) ECC as NAND ages

BUT… Adoption of LDPC seems to be more to do with controller development roadmap than a requirement of 3D NAND due to current use of MLC!
3D NAND – New Challenges - Reading

- Custom (non-ONFI) pinout
- Vendor-unique signals
- Extended addressing modes
- Vendor-unique commands
- New set features parameters
- New read-retry thresholds
3D NAND – New Challenges - Processing

- Data randomisation pattern generated typically using LFSR (Linear-Feedback Shift Register)
- Polynomial and pattern distribution tailored to physical layout of NAND
- 3D NAND adds Z-axis

Data randomisation pattern is XOR’ed with user data before storage in NAND to reduce the occurrence of bit patterns which can cause inter-cell interference
The Benefits of 3D NAND to Data Recovery

Low BER (Bit Error Rate)

- 3D NAND is mostly MLC

- Has a bigger cell size than 2D TLC
 - May change as cell size shrinks and 3D TLC is adopted but is good news for us right now!

- Low BER helps data recovery:
 - Requires less-intensive ECC which improves speed of processing
 - Fewer read-retries required, which improves chip imaging speed
 - Fewer uncorrectable pages, which simplifies mapping and increases quality of recovered data
Ontrack SSD Erasure Verification Service (EVS)

Purpose
• Tests the real-world effectiveness of a data erasure / sanitization method on SSD (also HDD) for manufacturers, vendors and integrators (among others)

Procedure
• Write known byte patterns to all logical blocks (two pass, two different byte values)
• Run client’s erase process, then analyse:-

Level I (Logical)
• Read LBAs via SSD interface, look for known data pattern (also include host-protected logical areas)

Level II (Physical)
• In-depth examination of all SSD NAND flash content using “Chip-Off”
Summary

• “Chip-Off” is needed for proper Erasure Verification on SSD and some SSD failure modes make this approach the only way to recover data

• Initially a steep learning curve to add support for 3D NAND as there are vendor-unique elements associated with reading and new challenges in processing

• However, 3D NAND is good news for Data Recovery! The current generation of 3D NAND is MLC, so there are real benefits over 2D TLC NAND

• We enjoy working with NAND vendors, drive manufacturers and controller chip manufacturers and collaboration helps us deliver a better service to our mutual clients
Thank You!

Please visit us at booth #126