

Annual Flash Controller Update

David McIntyre

DSMcIntyreConsulting@gmail.com

Text **FMS** to (408) 772-7044

Overview

Data Center Drivers
 Memory Hierarchy Drivers
 Current Flash Controller Challenges
 Supporting Technologies

Data Center Trends

- Hyper Converged Infrastructure
 - Integrated Compute/Storage/Networking
 - Massive interconnectivity
 - Good for Exchange, Oracle, SQL databases
 - Software managed virtualized resources

Hyper Scale

- Independent scaling of compute and storage resources
- Good for elastic workloads, e.g. Hadoop, NoSQL
- Also software managed

Data Center Trends

Storage

- Convergence of RAM/cache and SCM.
- All flash and hybrid arrays
- Persistent memory cache

Compute

GPU, TPU and FPGA accelerators

Networking

• Low latency, high performance RDMA networks

Hybrid Cloud

- For lease and on premises-equipment
- Deployment Options, e.g. OpenStack and Docker

Hyperscaler Priority

Hyperscale in 2020

By 2020, Hyperscale Data Centers Will House:		Today:
47%	of all data center servers	21%
68%	of all data center processing power	39%
57%	of all data stored in data centers	49%
53%	of all data center traffic	34%
dialo	© 2016 Cisco and/or its affiliates. All rights reserv	ed, Cisco Confidential

Flash controllers must support hyperscale requirements (latency, performance/watt, endurance, reliability)

Flash Memory Summit 2018 Santa Clara, CA

DS McIntyre Consulting LLC

Supporting Infrastructure

Memory and Storage Tiering

Flash Memory Summit 2018 Santa Clara, CA

Changing of the Guard

Flash System Challenges

Price/Performance Gaps in Storage Technologies

- Error correction costs increasing
- Endurance limits
- Slow write speeds continue
- IO bottlenecking
- Emerging NV technologies (MRAM, PCM, RRAM)

Error Correction Overview

Driving Factors for New ECC

- Increasing Bit errors in NAND Flash
- Soft error occurrences
- Decrease in write cycles
- RS, BCH overhead for data and spare area
- Increase use of Metadata in file systems
- Correction Overhead
- Gate count
- Requirement for no data loss

Comparing ECC Solutions

Features	BCH	LDPC
Gate Count	Low	Mid
Latency	Low	Medium
Tuneablity	low	high
Soft Data	No	Yes

Example Codelucida LDPC

Efficient ECC with NVMe Performance for 3D NAND TLC/QLC

Flash Memory Summit Flash Controller Support

IP	ю	Speed	Logic Density	Comments
ONFI 4.1	40 pins/ch	400 MTps	5KLE/ch	NAND flash control, wear leveling, garbage collection
Toggle Mode 2.x	40 pins/ch	400 MTps	5KLE/ch	Same
DDR4		3.2Gbps	10KLE	Flash control modes available for NVDIMM
PCM			5KLE	PCM- Pending production \$
MRAM			5KLE	MRAM- Persistent memory controller
BCH			<10KLE	Reference design
PCIe	G4x8	128Gbps	HIP	Flash Cache

Persistent Friend or Foe

- Intel/Micron Xpoint Claimed Attributes vs. NAND
 - Performance (10X)
 - Endurance (1000X)
 - Latency (1/1000X)
 - Byte addressable

- Est Cost (2X+)
- Opportunity for NAND to support load/store-driven data center applications (NVDIMM-F and NVDIMM-P)

Flash Controller Challenges: Now

Host Interface IO

- Gen Z, CCIX, OpenCAPI
- PCle Gen 4
- Open Channel

Application Requirements

- Deterministic latencies
- Load/Store vs Block
- Performance
- Endurance

Hybrid Control

- 3D NAND, 2D NAND
- Cache: 3DXpoint, MRAM

Flash Memory Summit 2012 Santa Clara, CA Flash Memory Summit 2017 Santa Clara, CA

Coherent Networks Roadmap

Cache coherency will continue to expand into SCM into SSD caches

<u>NE</u>	R		SoC ATTACH		FAR
HBM	DDR	Accelerator / Local SCM	Chassis SCM	Rack Pooled SCM	Messaging
		PCIe Phy CCIX	Future Spec	Rev	
	r - 18	02.3 short and long haul Phy	Gen-Z		
	- 8	^{02.3 Phy} OpenCAPI	Future Spec Rev		
				I	Re: OFA.org

NVDIMM Controller Architecture

Typical SSD Controller Architecture

File System

NVMe Roadmap- a NVMeF Precursor

SNIA

DMA to/from host memory CPU handles command transfer

YESTERDAY

NVMeF- Key Value Points

OpenFabricsAlliance.org

Encapsulated protocol transmitted over fabrics

RDMA (iWARP, RoCE) FC, Infiniband, L1 Tunneling

The goal is to enable next-gen technologies to deliver a 4KB I/O in less than 10 μs - about one thousandth of the latency of a 7200 RPM SATA drive

SSD Scale Out over Fabrics

NVMeF breaks through local NVMe barrier and supports low latency

Flosh Memory Summit Open Channel Pros and Challenges

- I/O Isolation and Determinism
- Software managed resources
- Application-centric
- Linux kernel support required
- Vendor-specific attributes

Re: CNEX

Differentiation Paradox

- Hyperscaler standardization
- Vendor competitive selling features
- >Application requirements
 - I/O
 - Power Consumption
 - Capacity
 - Latency

Controller Options

Technology scaling favors programmability and parallelism

Single Cores

Multi-Cores Coarse-Grained CPUs and DSPs Coarse-Grained Massively Parallel Processor Arrays

Fine-Grained Massively Parallel Arrays

Flash Controller Technology Options

- Data center metric is performance/watt
- Performance, power efficiency and flexibility is required to support data center applications

Flash Memory Summit Technology Comparison

Technology	Pros	Cons
CPU	Well established products	 Limited cores for parallel processing Power consumption
FPGA	Heterogeneous parallel processing Performance/Watt Flexibility	 Rudimentary development environment Inefficient per unit costing
GPU	Same task parallel processing Developer ecosystem	Power consumptionLeading variable types
ASIC	Highest Performance	 High NRE Custom design
ASSP	Custom Performance	Limited functionality

Summary

- Flash Control has extended into tiered subsystem management
 - Caching has extended into SCM, necessitating hybrid control
 - IO interfaces need to support fabric
 - Advancing geometries and process technologies require more and advanced error correction
 - Hyperscaler applications demand load/store performance with deterministic latency

Annual Flash Controller Update

David McIntyre

DSMcIntyreConsulting@gmail.com

Text **FMS** to (408) 772-7044

Flash Controller Challenges: Then

Emerging memory types

- ONFI 4.0, Toggle Mode 2.x
- PCM, MRAM
- DDR4

Controller Performance Options

- Write back cache, queuing, interleaving, striping

ECC levels

- BCH, LDPC, Hybrid
- FTL location- Host or companion
- Data transfer interface support
 - PCI Express, SAS/SATA, FC, IB

Flash Controller Challenges: Now

I/O Performance

- Interchip coherency
- Host Communications
- Network
- Latency
 - HPC network latencies
- Density
 - 3D, HBM2
- Heterogeneous flash memory types
- Reliability and Endurance

