Flash Memory Summit 2018
Persistent Memory - NVDIMMs
Contents

- Persistent Memory Overview
- NVDIMM
- Conclusions
Persistent Memory
Volatile and non-volatile technologies are continuing to converge

*PM = Persistent Memory

**OPM = On-Package Memory

New and Emerging Memory Technologies

HMC
HBM
RRAM
3DXPoint™ Memory
MRAM
PCM
Low Latency NAND
Managed DRAM

Source: Gen-Z Consortium 2016
Persistent Memory (PM) Vision

Persistent Memory Brings Storage

- For system acceleration
- For real-time data capture, analysis and intelligent response
Persistent Memory

- Bridges the gap between DRAM and Flash
- Dramatically increases system performance
- Enables a fundamental change in computing architecture
- Apps, middleware and OSs are no longer bound by file system overhead in order to run persistent transactions
NVDIMM
Persistent Memory - NVDIMMs

NVDIMM-N

- Host has direct access to DRAM
- CNTLR moves DRAM data to Flash on power fail
- Requires backup power
- CNTLR restores DRAM data from Flash on next boot
- Communication through SMBus
- Byte-addressable DRAM for lowest latency with NAND for persistence backup

NVDIMM-P

- NVDIMM-P interface specification targeting persistent memories and high capacity DRAM memory on DDR4 and DDR5 channels
- Extends the DDR protocol to enable transactional access
- Host is decoupled from the media
- Multiple media types supported
- Supports any latency (ns ~ us)
- JEDEC specification publication in 2018
NVDIMM-N How It Works

- Plugs into JEDEC Standard DIMM Socket
- Appears as standard RDIMM to host during normal operation
- Supercaps charge on power up
- When health checks clear, NVDIMM can be armed for backup
- NVDIMM can be used as persistent memory space by the host
- During unexpected power loss event, DRAM contents are moved to NAND Flash using Supercaps for backup power
NVDIMM-N How It Works

• When backup is complete, NVDIMM goes to zero power state
• Data retention = NAND Flash spec (typically years)

• When power is returned, DRAM contents are restored from NAND Flash
• Supercaps re-charge in minutes

• DRAM handed back to host in restored state prior to power loss
NVDIMM Ecosystem

- Standardized through NFIT and JEDEC
- Linux 4.4+ kernels have the software stack
- Open source library is available for applications
NVDIMMs BIOS/MRC Support Functions

NVDIMMs BIOS/MRC (Memory Reference Code)

1. Detect NVDIMMs
2. Setup Memory Map
3. ARM for Backup
4. Detect AC Power Loss or BMC/CPLD Triggered ADR
5. Flush Write Buffers
6. RESTORE Data On Boot
7. Enable I2C R/W Access

Source: SNIA Persistent Memory and NVDIMM SIG
Additional BIOS Settings

- BIOS also presents various menu options to setup NVDIMM operation.

- Configuration:
 - Erase-Arm NVDIMM
 - Restore NVDIMM
 - Reset Trigger ADR
 - S5 Trigger ADR
Linux Kernel 4.4+
NVDIMM-N OS Support

- Linux 4.2 + subsystems added support of NVDIMMs. Mostly stable from 4.4
- NVDIMM modules presented as device links: /dev/pmem0, /dev/pmem1
- QEMU support (experimental)
- XFS-DAX and EXT4-DAX available

file system extensions to bypass the page cache and block layer to memory map persistent memory, from a PMEM block device, directly into a process address space.

Block Translation Table: Persistent memory is byte addressable. Existing software may have an expectation that the power-fail-atomicity of writes is at least one sector, 512 bytes. The BTT is an indirection table with atomic update semantics to front a PMEM/BLK block device driver and present arbitrary atomic sector sizes.

A system-physical-address range where writes are persistent. A block device composed of PMEM is capable of DAX. A PMEM address range may span an interleave of several DIMMs.

A set of one or more programmable memory mapped apertures provided by a DIMM to access its media. This indirection precludes the performance benefit of interleaving, but enables DIMM-bounded failure modes.
Windows NVDIMM-N OS Support

- Windows Server 2016 supports DDR4 NVDIMM-N
- **Block Mode**
 - No code change, fast I/O device (4K sectors)
 - Still have software overhead of I/O path
- **Direct Access**
 - Achieve full performance potential of NVDIMM using memory-mapped files on Direct Access volumes (NTFS-DAX)
 - No I/O, no queueing, no async reads/writes

More info on Windows NVDIMM-N support:
- https://channel9.msdn.com/events/build/2016/p466

<table>
<thead>
<tr>
<th>4K Random Write</th>
<th>Thread Count</th>
<th>IOPS</th>
<th>Latency (us)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVDIMM-N (block)</td>
<td>1</td>
<td>187,302</td>
<td>5.01</td>
</tr>
<tr>
<td>NVDIMM-N (DAX)</td>
<td>1</td>
<td>1,667,788</td>
<td>0.52</td>
</tr>
</tbody>
</table>
Technology Comparison

<table>
<thead>
<tr>
<th>Technology</th>
<th>FeRAM</th>
<th>MRAM</th>
<th>ReRAM</th>
<th>PCM</th>
<th>3D Xpoint</th>
<th>NAND Flash</th>
<th>DRAM NVDIMM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endurance</td>
<td>10^{12}</td>
<td>10^{12}</td>
<td>10^{6}</td>
<td>10^{8}</td>
<td>$10^{6} - 10^{7}$</td>
<td>10^{3}</td>
<td>10^{15}</td>
</tr>
<tr>
<td>Byte Addressable</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Latency R/W</td>
<td>70ns-100ns</td>
<td>70ns/70ns</td>
<td>100ns/100µs</td>
<td>20ns/65ns</td>
<td>100ns/500ns</td>
<td>10µs/10µS</td>
<td>40-140ns</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>Low</td>
<td>Medium/Low</td>
<td>Low</td>
<td>Medium</td>
<td>Medium</td>
<td>Low</td>
<td>Medium</td>
</tr>
<tr>
<td>Interface</td>
<td>DRAM</td>
<td>DDR3 DDR4</td>
<td>Flash-like</td>
<td>Proprietary</td>
<td>Proprietary</td>
<td>Toggle ONPHI</td>
<td>DDR3 DDR4</td>
</tr>
<tr>
<td>Density Path</td>
<td>Low</td>
<td>Gigabit+</td>
<td>Terabit</td>
<td>64Gb+</td>
<td>64Gb+</td>
<td>Gigabit+</td>
<td>Gigabit+</td>
</tr>
</tbody>
</table>
NVDIMM Performance Comparison

- **Test Platform**: Supermicro X11DRI 16GB DDR4 2400 Mhz RDIMM RAM, Intel XEON 8160 2.1 Ghz 24 core, 16 GB DDR4 JEDEC NVDIMM-N. 480GB Optane SSD
- **Software**: Ubuntu 16.04.3 LTS Linux 4.10.0-28; DAX File System
- **Test Software**: Calypso CTS 7.0 fe 1.26.25 be 1.9.317

![Graph showing NVDIMM Performance Comparison](image-url)
How NVDIMM-N’s Improve Performance

- NVDIMM-Ns are byte addressable. This allows databases to be built in memory.

- With direct access to records this removes disk IO and all the overhead that involves.

- A memcached structure is dramatically faster than even the best solid-state solution, with updates just requiring a register-to-memory computer instruction instead of the file stack and interface overhead.

- Since this looks like DRAM to the system, using RDMA to create redundancy and cluster sharing is a given, with existing designs working just fine.
NVDIMM-N Performance

- NVDIMMs provide 34 times the number of IOPS compared with standard SSDs, with 16 times the bandwidth and 81 times lower latency
- Streaming data applications can be architected to greatly benefit from this marriage of memory and storage

Source: Microsoft
NVDIMM Use Cases

- **In Memory Database**
 - Journaling, reduced recovery time, tables

- **Traditional Database**
 - Log acceleration by write combining and caching

- **Enterprise Storage**
 - Tiering, caching, write buffering and meta data storage

- **High-Performance Computing**
 - Check point acceleration and/or elimination
What is the Outlook?
Nonvolatile Memory Shipments as a Percentage of Server Memory (PB) and NVDIMM Unit Forecast*

* Excludes NVDIMMs deployed in solid state arrays

Source: Gartner 2017
Infrastructure Changes

- Operating System
- File system changes for memory mapped files
- Memory Management software
- Hypervisors
- Containers
- Allocation of Persistent Memory to Guests
- Coordinating with Guest’s use of Persistent Memory
- User space libraries supporting Persistent Memory
- Support for legacy interfaces with Persistent Memory-aware implementations
- Securing application data in a multi-tenant environment
Persistent Memory Standards

- JEDEC JESD 245, 245B: Byte Addressable Energy Backed Interface
 - Defines the host to device interface and features supported for a NVDIMM-N

- ACPI 6.2
 - NVDIMM Firmware Interface Table (NFIT)
 - NVM Root and NVDIMM objects in ACPI namespace
 - Address Range Scrub (ARS)
 - Uncorrectable memory error handling
 - Notification mechanism for NVDIMM health events and runtime detected uncorrectable memory error
Encryption

- Estimated 10-20% of NVDIMM end-users require encryption
 - Financial – high-speed trading, OLTP
 - Public – DoD
 - Health – medical records
 - Private - corporate IT departments

- With block access NVDIMMs the controller chip can manage encryption in the same way as SSDs

- With byte access NVDIMMs the host memory controller needs to provide encryption support

- A key is supplied by the host to support backup with encryption (which could impact performance)

- During a system power loss, in-flight data written from the DRAM to the Flash will be encrypted
Key Takeaways

- Workloads are being re-architected to use large amounts of data placed in local memory.
- Data reload times are significant, driving a need to retain data through a power failure.
- More Persistent Memory technologies are emerging.
- Applications help drive demand for Persistent Memory.
- Standardization enables wider adoption of Persistent Memory-aware applications.
- SNIA Persistent Memory and NVDIMM SIG is driving education and adoption.
SNIA Persistent Memory and NVDIMM SIG

Charter
- To accelerate the awareness and adoption of Persistent Memories and NVDIMMs for computing architectures

Activities
- Educate on the types, benefits, value, and integration of Persistent Memories
- Communicate usage of the NVM Programming Model developed to simplify system integration of current and future PM technologies
- Influence and collaborate with middleware and application vendors to support Persistent Memories
- Develop user perspective case studies, best practices, and vertical industry requirements
- Coordinate with industry standards groups and promote industry standards related to PM and NVDIMM
- Synchronize and communicate a common Persistent Memory taxonomy

Membership
- All companies with an interest in Persistent Memory and NVDIMM are welcome to join and participate – snia.org/join for more details.
Thanks for Attending

Questions?

Visit www.snia.org/pm
for Persistent Memory videos, webcasts, and presentations
Backup Slides