Manufacturing Equipment Innovations
Enabling 3D Architecture

Dr. Harmeet Singh
Corporate VP, Etch Product and Technology

Flash Memory Summit 2017, Santa Clara
Strategic Partner of Choice for Today’s and Tomorrow’s Memory Technologies

Lam Research

- Plasma Processing
- Wet Processing
- Atomic-Layer Processing
- Mechatronics
- Software
- Services

Enabling 3D Architecture

- CPU Registers
- L1, L2, L3 Cache (SRAM, e-DRAM)
- Main Memory (DRAM)
- Storage Class Memory (SCM)
- Solid State Memory (SSD, Flash Drive)
- Virtual Memory (HDD)
Today’s and Tomorrow’s Scaling Is Enabled by 3D Architecture

The Vertical Reality

2D → 3D NAND

Planar → FinFET

Chip → Stacked Chip

Aspect Ratio ~9:1

The Burj Khalifa, tallest structure in the world

Aspect Ratio >40:1

Channel hole etched for 90+ layer 3D NAND

And simultaneously etch a trillion holes per wafer

Each hole is a diameter of ~x10^-3 of a human hair

© 2017 Lam Research Corp. | Flash Memory Summit
Deposition and Etch Processes Define 3D NAND Memory Array

- **Bitline:** Metal fill
 - SABRE® copper plating
- **Contact:** Metal fill
 - ALTUS® CVD/ALD deposition
- **Stair:** Staircase etch
 - Kiyo® conductor etch
- **Stack:** Alternating film deposition
- **Slit:** High aspect ratio etch
- **Channel:** High aspect ratio etch
- **Wordline:** Metal fill
 - ALTUS® CVD/ALD deposition

Lam is a leading equipment supplier in 3D NAND deposition and etch applications.
Breaking Fundamental Tradeoff with Equipment Innovation
Example: Memory Hole Etch - the Most Critical and Difficult Step in 3D NAND Manufacturing

High aspect ratio etch challenges due to transport limitation

- Mask consumed by ions at constant rate
- Neutrals shadowed and stick, can fail to reach bottom >40:1
- Ions weaken from induced voltages, 50% of ions may not reach bottom >50:1

Increasing engineering difficulty for high aspect ratio etches

- Equipment innovation required to break the fundamental tradeoff (AR, profile, mask selectivity)

Flex™ Channel Hole Etch
Atomic-scale process control is required in addition to micron-scale etched depths

Etched profile control precision: Angstroms
Etch depth capability: Microns
New Class of Materials and New Manufacturing Challenges

<table>
<thead>
<tr>
<th>Memory Type</th>
<th>Electrode</th>
<th>Magnetic</th>
<th>Dielectric</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRAM</td>
<td>Ru, Ta, TiN</td>
<td>CoFe, NiFe, CoFeB, PtMn, IrMn, Ru</td>
<td>Al₂O₃, MgO, NiO</td>
</tr>
<tr>
<td>RRAM/CBRAM</td>
<td>W/Ag/Cu/Co/Mo/TaSN</td>
<td>(Ag-Ge-S/Cu-Ge-S)</td>
<td>Perovskite (CaTiO₃), PrCAMnO₃, transition metal Ox</td>
</tr>
<tr>
<td>FeRAM</td>
<td>Pt/Ir</td>
<td></td>
<td>PZT (PbZr1-xTixO₃): Y1 ((SrBiTa)O₃), doped HfO₂</td>
</tr>
<tr>
<td>Phase Change Memory (PCM)</td>
<td></td>
<td></td>
<td>Chalcogenide (Ge₂Sb₂Te, InSbTe)</td>
</tr>
<tr>
<td>3D NAND</td>
<td>Traditional materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRAM</td>
<td>Traditional materials</td>
<td></td>
<td>ZrO/AlO/SrTiO</td>
</tr>
</tbody>
</table>

- **Increasing Etch Challenges**
- **Sensitive to chemistry and air exposure**
Innovative **Technology**
Trusted **Productivity**
Fast **Solutions**