

Experimental Results of Implementing NV Me-based Open Channel SSDs

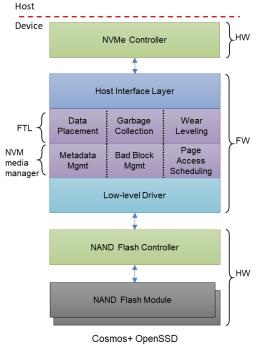
<u>Sangjin Lee</u>, Yong Ho Song Hanyang University, Seoul, Korea

OpenSSD Project

- Open source SSD for search and education
 - Jasmine OpenSSD (2011)
 - Cosmos OpenSSD (2014)
 - Cosmos+ OpenSSD (2016)
- Cosmos+ OpenSSD (FMS 2016)
 - FPGA implementation of SSD ntroller hardware w/NVMe support
 - Can modify both SSD controller dware and firmware

www.openssd.io

github.com/Cosmos-OpenSSD


Cosmos+ Storage Controller

Supporting up to 8 channels of NAND flash memories

Cosmos+ Component Layers

for General NVMe SSD

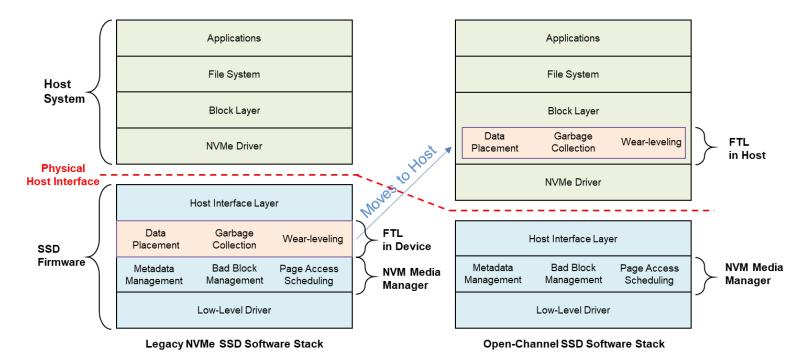
Fetches NVMe commands from host

Fetches NVMe commands from NVMe controller Handles NVMe admin commands Delivers NVMe NVM commands to FTL

Provides NAND flash controller API

Executes NAND commands to NAND flash module

Open-Channel SSD (OCSSD)



a solid-state drive which does not have a firmware Flash Tr anslation Layer implemented on the device, but instead leaves the management of the physical solid-stat e storage to the computer's operating system

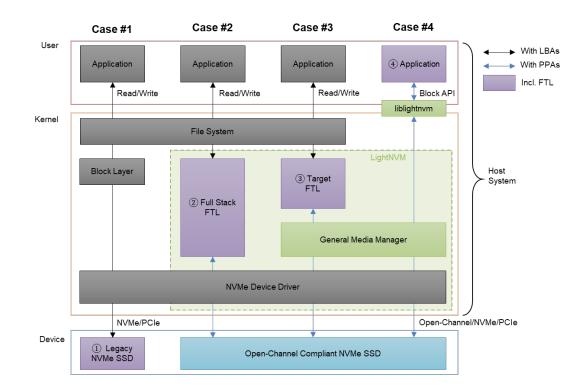
- Moves FTL functions in storage device to host
 - Less operation loads on storage device
- Host-controlled I/O scheduling and data placement
 - Makes storage-specific policy for better performance

FTL Function Migration

Flash Memory Summit 2017 Santa Clara, CA

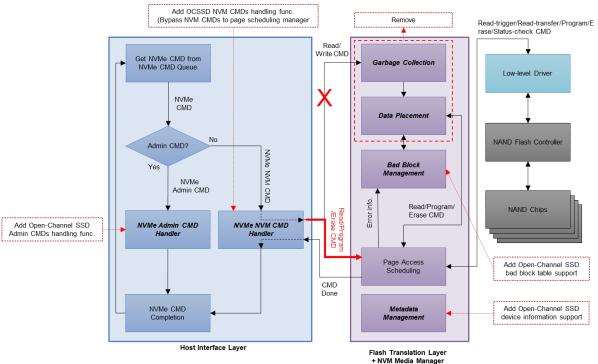
6

8 OCSSD Commands


4 mandatory commands and 4 optional commands

Open-Channel Command	Mandatory / Optional	Cmd Set	Description	Imple- mented	
Device identification	М	Admin	Gets device and media information	Yes	
Physical block erase	М	NVM	Erases target PPAs	Yes	
Physical page address write	М	NVM	Writes data to target PPAs w/ device ECC engin e	Yes	
Physical page address read	М	NVM	Reads data from target PPAs w/ device ECC en gine	Yes	
Set bad blocks table	О	Admin	Sets bad block information	Yes	
Get bad blocks table	О	Admin	Gets bad block information	Yes	
Physical page address raw write	О	NVM	Writes data to target PPAs w/ host ECC engine	No	
Physical page address raw read	о	NVM	Reads data from target PPAs w/ host ECC engi ne	No	

Based on Open-Channel SSD 1.2 specification



4 FTL Implementation Options

Modification in Processing Flow

Evaluation Environment

	Items	Descriptions					
	OCSSD Target FTL	pblk					
ł	Benchmark	ioping [*] (I/O latency measurement) (4K random, 128K sequential)					
	SSDs	1. Legacy NVMe SSD (Native Cosmos+) 2. OCSSD (Implemented on Cosmos+)					
SSD platform board		Cosmos+ OpenSSD rev. 2.1**					
FPGA bitstream		Prebuild 3.0.0*** (8-channel 8-way)					
Device	Legacy NVMe	GreedyFTL 2.7.0.c****					
firmware	OCSSD	Modified from GreedyFTL 2.7.0.c					

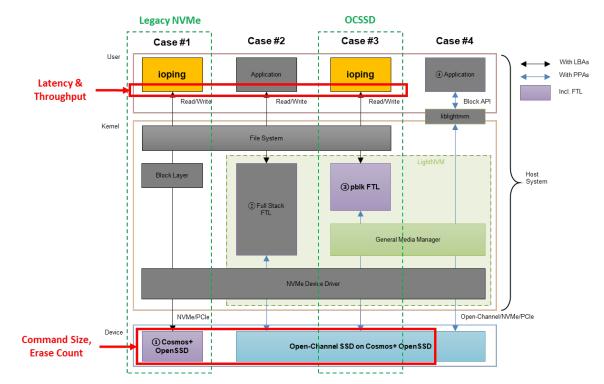
* https://github.com/koct9i/ioping

** http://openssd.io/index.html

*** https://aithub.com/Cosmos-OpenSSD/Cosmos-plus-OpenSSD/tree/master-prev/Prebuild/Prebuild-3.0.0

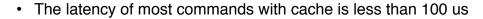
**** https://github.com/Cosmos-OpenSSD/Cosmos-plus-OpenSSD/tree/master/Source/Firmware/GreedyFTL-2.7.0.c

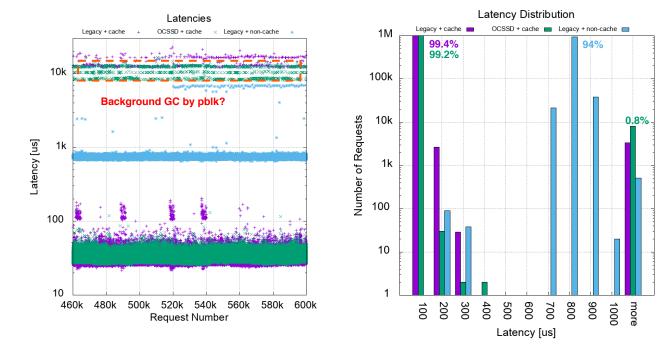
Information for Device Identification


About Open-Channel SSD					
Bad blocks table management	0				
Hybrid command support	Х				
L2P map location	Host				
ECC support	Storage				
Multi-plane operation	0				
Command suspension	Х				
Scramble on/off	Х				
Encryption	х				

About NAND flash					
Flash media type	SLC				
Number of channels	8				
Number of ways per channel	8				
Number of planes per way	2				
Number of blocks per plane	Max. 4096*				
Number of pages per block	128				
Number of bytes in a page	16384				
Sector size	4096				

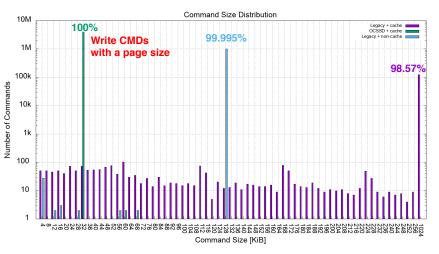
* Varies depending on a request size for faster evaluation




Some Performance Measurement

Latency Analysis - Legacy NVMe vs OCSSD 12 8K Seq. Write

Flash Memory Summit 2017 Santa Clara, CA

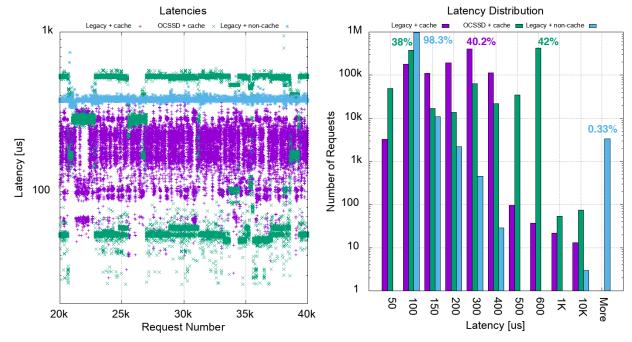

QD1, 1 M REQs, 64 GB NAND, 8-channel 8-way (64 LUNs) There is no 'pblk + non-cache' data, because pblk with direct I/O occurs pblk's corruption on our environment.

Cmd. Size Distribution - Legacy NVMe vs OCS SD 128K Seq. Write

- · OCSSD divides the write request to page write commands
- OCSSD issues an erase command after write command to next block of the same LUN

Sam	e L	.UN									•.			_	
0055	DP	PA Write	Command												
			000_00FC0200	=>ch	7.	lun	7.	nl	0.	Ы	1.	ва	0.	sec	0
			00_00FC0201												
			000_00FC0202												
			000_00FC0203												
			000_00FE0200												
			000_00FE0201												
PPA[6]:	0x00000	000_00FE0202	=>ch	7,	lun	7,	pl	1,	Ы	1,	pq	0,	sec	2
PPA[7]:	0x00000	000_00FE0203	=>ch	7,	lun	7,	pl	1,	Ы	1,	pq	0,	sec	3
0CSS	DВ	lock Era	se Conmand												
PPA[0]:	0x00000	000_00FC0400	=>ch	7,	lun	7,	թլ	Ο,	ьl	2,	рg	Ο,	sec	0
	-						-			-		-		-	-
		PA Write													
			000_00000204												
PPA[1]:	0x00000	000_00000205	=>ch	Ο,	lun	0,	рl	0,	ы	1,	рg	1,	sec	1
			00_0000206												
			000_00000207												
			000_00020204												
			000_00020205												
			000_00020206												
PPAL	7]:	0x00000	000_00020207	=>ch	υ,	lun	Ο,	рl	٦,	Ы	٦,	рg	١,	sec	3
			se Command		•			_	•		2				
PPAL	0]:	0X00000	000_00000404	=>ch	υ,	Tun	υ,	ъ	υ,	DI	z,	pg	т,	sec	U

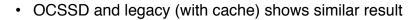
	Legacy + cache	OCSSD + cache	Legacy + non-cache			
Block Erase Count	29952	31358	30016			

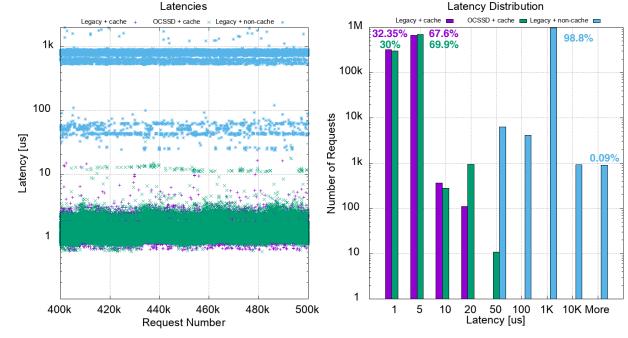

Flash Memory Summit 2017 Santa Clara, CA

QD1, 1 M REQs, 64 GB NAND, 8-channel 8-way (64 LUNs)

Latency Analysis - Legacy NVMe vs OCSSD 12 8K Seq. Read

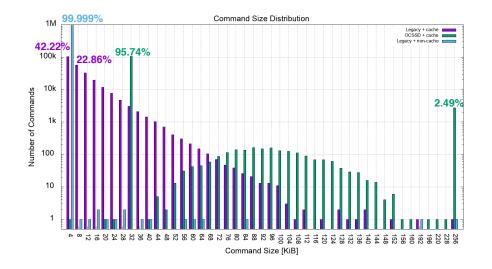
OCSSD shows high average latency in this experiment

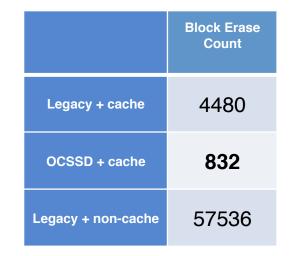



Flash Memory Summit 2017 Santa Clara, CA

QD1, 1 M REQs, 64 GB NAND, 8-channel 8-way (64 LUNs)

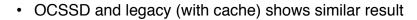
Latency Analysis - Legacy NVMe vs OCSSD 4 K Rnd. Write

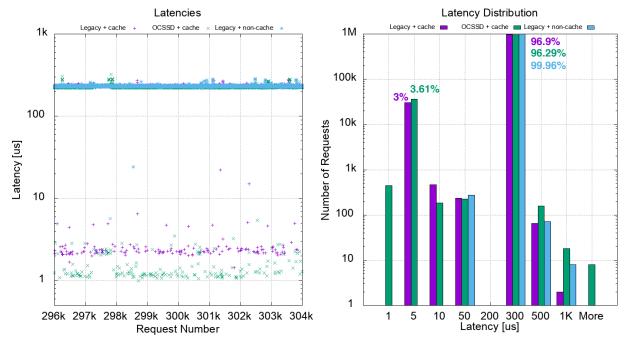

Flash Memory Summit 2017 Santa Clara, CA


QD1, 1 M REQs, 2 GB NAND, 8-channel 8-way (64 LUNs)

Cmd. Size Distribution - Legacy NVMe vs OCS SD 4K Rnd. Write

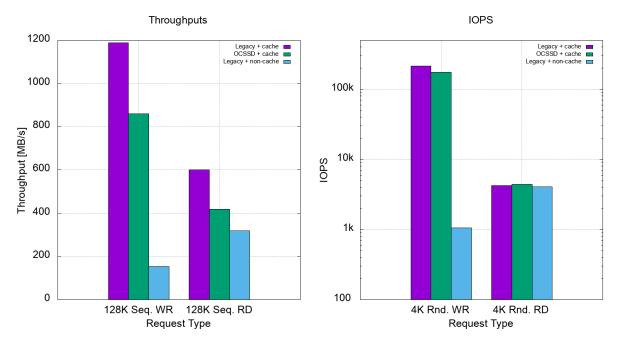
- · OCSSD combines the write request to page write commands
- · OCSSD shows a lower block erase count compared to others




Flash Memory Summit 2017 Santa Clara, CA

QD1, 1 M REQs, 2 GB NAND, 8-channel 8-way (64 LUNs)

Latency Analysis - Legacy NVMe vs OCSSD 4 K Rnd. Read



QD1, 1 M REQs, 64 GB NAND, 8-channel 8-way (64 LUNs)

Performance Benchmark - Legacy NVMe vs O CSSD

· Note that this is the result with QD1

Flash Memory Summit 2017 Santa Clara, CA

QD1, 1 M REQs, 64 GB NAND, 8-channel 8-way (64 LUNs)

- OCSSD implementation on Cosmos+ OpenSSD system
 - Makes it possible to investigate internal operations and analyze performance
- From experiments, we observe that OCSSD
 - divides/combines write request(s) to page write command(s)
 - shows significantly low block erase count at 4K random write
 - shows high average latency at 128K sequential read
- Any collaboration is welcome

Thank you

For further information,

visit http://www.openssd.io!