

Persistent Memory Forum R-12 3D XPoint: Current Implementation s and Future Trends

XPoint Memory Comparison

Process & Architecture

Jeongdong Choe

Senior Technical Fellow, TechInsights

- Semiconductor Memory Device Roadmap
- XPoint Memory Overview
- XPoint Memory Deep Dive
 - Process Integration & Materials
 - Memory Tile & Cell Design
 - Transistors
- Leading, Competing or Chasing?
 - Comparison with DRAM & 3D NAND

Memory Device Roadmap

Flash Memory Summit 2017 Santa Clara, CA

MRAM STT-MRAM	(180nm, MR2A)	(Aerofiex, UTSMR)	(Sorm, EM03D64)	Honeywell (150nm, HXNV)	ELECTIONICS SMIC (90mm, CTR2)	(256mb, EM0302256)	28nm, STT-MR
PCRAM XPoint	(90nm, NP8P) (50nm, NP8P) (55nm, K571229)		фістоп (166 РСМ-СРОСКЗ)			(128Gb, Optane SSD) (Micron (Quanti)	
ReRAM Memristor OxRAM CBRAM				adesto (130nm, MM24) Panasonic (180nm, MN101)	FUJITSU Panasonic (4Mb, MB85a5)	adesto (45mm, RM33)	
FeRAM	TEXAS INSTRUMENTS (130nm, XM5430)		(180nm, MB85R5)	(130nm, CY158)			
	~ 2012	2013	2014	2015	2016	2017	2018*

3

Questions About XPoint

Tech

XPoint Memory Overview

- 16GB single die in a PKG
- Memory efficiency: 91.4 %
- Memory density (/Die): 0.62 Gb/mm²
- Memory density (/Array): 0.69 Gb/mm²

Bpoly Level View

Package dimensions	18.0 mm x 14.0 mm x 1.10 mm thick		
Manufacturer, part number, downstream	Intel, MEMPEK1W016GAXT, Optane™ 16GB memory module		
Wafer size, foundry, process type	300 mm, Intel, 3D XPoint memory cell over CMOS		
Die markings	<intel logo=""> \$15C (M) © 2014</intel>		
Die size (from die seal)	16.16 mm x 12.78 mm (206.5 mm²)		
Die thickness	220 µm		
Number, type of metals	5, 4 Cu and 1 Al and W used as word and bit lines		
Minimum observed contacted logic gate pitch	0.38 μm		
Minimum observed logic transistor gate length	0.086 µm		
Minimum metal pitch	84 nm		
3D XPoint memory bit line (word line) pitch	38.5 nm		
3D XPoint memory word line (bit line) pitch	40 nm		
Memory cell area	0.0015 µm²		
Technology generation	20 nm		
Feature measured to determine process generation	Half bit line (word line) pitch		

XPoint: Process Integration

- GST-based PCM (Phase Change Memory) between M4 and M5
- Storage layer vertically stacked on Selector
- Se-Ge-Si ternary phased OTS Selector with As doped
- Double memory cell stacked
- 1 Poly Si (Co-silicide), 5 Metals (excluding memory/WL/BL layers)

XPoint: Memory/OTS Elements

- Top & bottom cell stacked
- TWL/TE/PCM/ME/OTS/BE/BL2/BL1/TE/PCM/ME/OTS/BE/BWL
- **PCM:** $Ge_{0.12}Sb_{0.29}Te_{0.54}(Si_{0.05})$, **OTS:** $Se_{0.44}As_{0.29}Ge_{0.1}Si_{0.17}$,

✓ 1,000 times faster than NAND Flash

✓ 10 times denser than DRAM

✓ 1,000 times better endurance than NAND

vs. 3D NAND?

Really?

• Memory Density: x3.2 (vs. SS 18nm DRAM), x6.6 (vs. M 20nm DRAM)

XPoint vs. DRAM: Cell Size

• Memory Cell Size: 58% (vs. SS 18nm DRAM), 36% (vs. M 20nm DRAM)

• Memory Density: 24% (vs. SS 48L V-NAND TLC), 18% (vs. Toshiba/SanDisk 64L)

Memory Array Efficiency ... may not represent

Effective Memory Cell Area Efficiency

Comparison of Effective Memory Cell Area Efficiency: Higher the better

XPoint vs. 3D NAND: Unit Cell Area

Comparison of Effective Unit Cell Area: Lower the better

vs. DRAM

6 times denser than Micron 20 nm DRAM

3 times denser than Samsung 1x DRAM

vs. NAND

18% memory density of Toshiba/SanDisk 64L NAND Higher memory cell area efficiency than 2D NAND Relatively lower cell area efficiency than 3D NAND