NAND Flash Media Management Algorithms

Erich F. Haratsch
Seagate
Outline

- NAND Flash Scaling Trends
- ECC
- Hard and Soft Decision Decoding
- Read Voltage Calibration
- Redundant Silicon Elements
- Summary
NAND Scaling Trends

- 3D NAND may extend beyond 100 layers
- 3D NAND extends scaling towards 1Tb die capacity

- Required ECC for SSD-grade endurance exceeds 60b/1KB for 2D TLC
- 3D NAND relies on strong ECC to make TLC mainstream for SSDs
NAND Impairments

<table>
<thead>
<tr>
<th>Impairment</th>
<th>Effect</th>
<th>Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program/Erase Cycling</td>
<td>Voltage shift/widening</td>
<td>ECC Read Voltage Calibration</td>
</tr>
<tr>
<td>Retention</td>
<td>Voltage shift/widening</td>
<td>ECC Read Voltage Calibration</td>
</tr>
<tr>
<td>Media Defects</td>
<td>Page, block, plane, die failure</td>
<td>Redundant Silicon Elements</td>
</tr>
</tbody>
</table>

- Presented Flash media management algorithms can help to mitigate Read Disturb and Intercell Interference as well.
ECC: BCH Codes

- Conventional SSD Controllers use BCH Codes
- BCH codes are algebraic codes, defined by:
 - Code word length
 - Error correction capability per code word
 - For example: 40 bit error correction over 1 KB code words
- Many SSD controllers implement BCH codes with 1 KB code words
ECC: BCH Codes

- BCH codes typically support hard-decision decoding only
- Error recovery by read retry
- Individual hard decision decoding attempts for different read voltages
NAND Flash Memory compares read voltage with read reference voltage to generate hard decision.

- One reference voltage for LSB page, 2 reference voltages for MSB page.
- Hard decision is used for decoding.
Voltage Distribution Shift and Widening

- P/E cycling increases right tails of distributions
- Retention increases left tails of distributions
- Default read reference voltages are misplaced as a result
Read Retry Algorithm

- Default read reference voltage optimized for typical condition
- Read retry algorithm cycles through several individual read decoding steps
- Retry steps use read reference voltages optimized for program/erase cycling, retention, read disturb, etc.
Low-Density Parity Check (LDPC) Codes

- Defined by a sparse (low density) parity check matrix H
- Are represented with a bi-partite graph
- Support hard and soft decision decoding

$$H = \begin{bmatrix}
1 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 1
\end{bmatrix}$$

Bi-Partite Graph:
- Multiple read operations with different reference voltages to generate soft decision
- LDPC decoder uses soft decision during error recovery
Hard/Soft LDPC vs. BCH

- Soft-decision LDPC decoding has significantly better error correction than BCH decoding
Soft LDPC Levels

- Sequence of retries with varying read voltage settings
- Computation of soft information (LLRs) based on multiple read decisions

Read voltage placements for soft LDPC:
Optimizing LDPC Error Correction

- LDPC code parameters and decoding algorithm need to be optimized for good performance at low error rates
Adaptive Code Rates

- Beginning of Life: use less ECC to increase overprovisioning
- End of life: increase ECC to maintain reliability

Conventional Error Correction:
Stores fixed ECC in spare field

Adaptive ECC (BOL):
Stores ECC in a portion of spare field and increase OP

Adaptive ECC (EOL):
Stores ECC in spare field and uses some of the NAND page

Adaptive ECC allows for more free space @ BOL = More OP and less write amplification
Switching Code Rates

- Multiple LDPC codes cover wide RBER range
- As NAND flash ages, controller switches to the next stronger code
- Read performance improves, since stronger LDPC codes decode data faster
Optimized read voltages reduce retry rate and extend endurance.

Optimum read voltages shift as a function of endurance, retention and read disturb.
Media Failures

- Pages, blocks, planes or the whole die can fail
- ECC cannot recover data from such catastrophic failures
- Need RAID-like protection inside SSD
RAISE™: Redundant Array of Independent Silicon Elements

- RAID-like data protection within the drive
- Write data across multiple dies with additional protection
- Corrects full page, block or die failures when all soft LDPC steps fail
SSD Controller: Block Diagram

- **Host**
- **Host Interface**
- **FTL**
- **LDPC Encoder**
- **LDPC Decoder**
- **LLR Generation**
- **Firmware: Data and Media Management**
- **Write path**
- **Read path**
- **Flash Interface**
- **NAND Flash devices**
Multi-Level Error Correction

- Hard-decision LDPC decoding is on-the-fly error correction method
- Progressively apply stronger decoding methods such as soft-decision LDPC decoding and signal processing
- Specialized noise handling techniques for P/E cycling, retention, read disturb, etc.
- Optimize time-to-data
Conclusion

- Latest memory geometries demand intelligent NAND management features
- 3D NAND will still rely on strong ECC and advanced NAND management features to make TLC mainstream for SSD applications
Thank You! Questions?

Visit Seagate Booth #505

Learn about Seagate’s portfolio of SSDs, flash solutions and system level products for every segment.

www.seagate.com/Nytro