LightNVM Brings SSDs to the Linux Kernel

Matias Bjørling, LightNVM Principal Architect
CNEX Labs, Inc.
Introduction

- Matias Bjørling, LightNVM Principal Architect, CNEX Labs, Inc.

CNEX Labs

- CNEX is a privately held start-up company
- Founded in 2013 by semiconductor industry veterans in Silicon Valley
- Funded by VC and investments from Fortune 500 companies in storage and networking
- Chartered to deliver innovative system solutions in the form of semiconductors and software
- First product is a highly differentiated NVMe SSD controller ASIC
- Currently shipping SDK’s; engaged with strategic customers and partners for mass production
SSD Controllers: Terminology and Core Functionality

Traditional SSD
- Logical Block Addressing (LBA) on Device
- FTL controlled by Device Firmware ("Black-Box")
- Fixed functionality & performance

Flash Translation Layer (FTL) for a typical NVMe SSD device

Where does it shine?
When is this not-so-good?

Hint:
Jeffrey Dean, Luiz André Barroso, "The Tale at Scale"
Key Drivers:
- Web-Scale Datacenters
- Hyper-converged Infrastructure
- Flash Array Products
- High-Performance Computing

Key Requirements
- Latency
 - Low & Deterministic
 - Versus Endurance and Throughput
- Power/Energy efficiency

LightNVM for Application-Defined-Storage

- Full host control of Physical data placement, I/O scheduling, and background operations
- FTL tailored for specific application types and workloads
- Low and predictable latency, DRAM-less controllers, and energy efficiency
LightNVM: Key Concepts

Traditional SSD
- Logical Block Addressing (LBA) on Device
- FTL controlled by Device Firmware ("Black-Box")
- Fixed functionality & performance

Open-Channel SSD
- Physical Page Addressing (PPA) Command Set
- Key FTL functions exposed to LightNVM on Host
- Flexible for application-specific performance

- **Host System with LightNVM**
 - Data Placement
 - I/O Scheduling
 - Background Operations

- **Legacy SSD Controller ASIC**
 - PCle/NVMe
 - Read/Write/Trim “Logical Blocks”
 - Wear-Leveling
 - Metadata State Management
 - Error Handling
 - XOR engines
 - ECC engines
 - SMART/health Management

- **Non-Volatile Media**

- **Open-Channel SSD Controller ASIC**
 - PCle/NVMe
 - Read/Write/Erase “Physical Pages”
 - Wear-leveling
 - Metadata State Management
 - Error Handling
 - XOR engines
 - ECC engines
 - SMART/health Management

- **Non-Volatile Media**

Flash Memory Summit 2016, Santa Clara, CA
LightNVM with Open-Channel SSD Hardware

NVMe compatible:
- Physical Page Addressing (PPA) Command Set
- Linux kernel 4.4+
- Managed using standardized nvme tools (nvme-cli)

Common Data Structures
- Append-only
- Key-Value

Provisioning Interface
- Reserve block
- Release block

NVMe Physical Page Address Command Set

Open-Channel SSD
- Metadata State Mgmt.
- ECC Engine
- XOR Engine

Device Responsibilities

Block Storage

Flash Memory Summit 2016, Santa Clara, CA
LightNVM Leverages NVMe for Minimal Disruption

- Use existing NVMe Admin and Queuing structure, and NVMe device driver
- Add I/O Commands for “Physical Page Addressing” (PPA)
 - Currently implemented as NVMe “vendor unique” commands;

Open-Channel PPA I/O Commands:

- **Read PPA:** “Read a PPA, in unit of a sector”
- **Write PPA:** “Write to a PPA, in unit of a sector”
- **Erase PPA:** “Erase an NVM block”
- **Identify Geometry:** “Get geometry of device & media”
Predictable Performance, Latency

- With Open-Channel SSDs, host FTL software can be tuned for workloads and application types
- Enables data placement by data “type” or “class”, to avoid mixing data within NAND flash blocks
- Reduced overprovisioning, reduced write-amplification, intelligent garbage collection…
- A qualitative example:
Read/Write Latency

Flash Memory Summit 2016, Santa Clara, CA
User Space FTL with LightNVM, liblightnvm

- Potential to collapse multiple layers of redundant mapping in application & filesystem
- Bypass Kernel processing, preserve low-latency characteristics of new/emerging NV Media types
Application Acceleration with LightNVM, liblightnvm

- Maps Flash blocks to RocksDB levels
 - Perfect Layout on SSD
 - No garbage collection
 - Reduced write amplification

- Maps flash blocks to large data blocks
 - No garbage collection necessary

- Metadata in RocksDB
 - Fast updates

Predictable throughput and latency
Summary

- Significant advantages to OpenChannel SSD with Host FTL
 - Performance, Latency, Power, Endurance, Application Specific Performance, …
 - De-couples FTL SW from SSD Controller Hardware (Development Cycles) – Enables Rapid Innovation
- Minimal disruption
 - Utilize existing NVMe; add I/O commands for Physical Page Addressing
- OpenChannel SSD and LightNVM FTL is a Growing ecosystem!
 - Participate at: https://github.com/OpenChannelSSD

See OpenChannel/LightNVM SSD demos at FMS:
 - Liteon: Booth 621
 - Micron: Booth 134
 - Radian: Booth 615

Thank-You!