Testing Controller Memory Buffer Performance In An NVM Express SSD

Ramyakanth Edupuganti, Senior Product Research Engineer,
Dr. Stephen Bates, Senior Technical Director,
Microsemi Corporation
August 9th, 2016
Overview

• Background
• Controller Memory Buffers
• High-Speed SSDs
• Enabling Linux Support
• Performance Results
• Conclusions
PCIe network and storage devices can generate and consume several GB/s.

Devices have either a high performance DMA engine, a number of exposed PCIe BARs or both.

Until the Controller Memory Buffer, any high-performance transfer of information between two PCIe devices has required the use of a staging buffer in system memory.

The bandwidth to system memory is not compromised when high-throughput transfers occurs between PCIe devices.
Controller Memory Buffers (CMBs) were added to the NVM Express standard in revision 1.2.

CMBs are PCIe BARs (or regions within a BAR) that can be used to store either generic data or data associated with an NVMe block command.

With appropriate implementation, CMBs can be made persistent across power cycles (MRAM, poly-caps, 3DX-point, etc.,)
High-Speed Solutions

- In Direct Memory Interface (DMI) mode, Microsemi Flashtec NVRAM cards achieve:
 - Sub-microsecond latency for small access sizes
 - 10 million IOPs for small access sizes
Enabling Linux Support Features

- Linux support has been enabled by several recent additions to the kernel, including:
 - ZONEDEVICE-the ability to associate a range of memory addresses (PFNs)
 - PMEM-a ZONEDEVICE device driver that exposes memory region to the rest of the OS
 - DAX-a framework that allows a memory-addressable block device to bypass the page cache
 - STRUCT PAGE SUPPORT-PMEM devices can optionally include struct page backing for DMA
Performance Results

- The DMA engines in the RDMA device can target the BAR on the IOPMEM device and can either use the `mmap()` on the IOPMEM direct or `mmap()` files on a DAX-mounted filesystem as the RDMA memory regions.

- Performance:

<table>
<thead>
<tr>
<th>Write BW</th>
<th>Read BW</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 GB/s</td>
<td>1.2 GB/s</td>
</tr>
</tbody>
</table>
- Sub 3 µs read times for small access sizes
- CX4, RoCE, and no RDMA switch
- Latency rises for larger accesses (these are unaligned and byte addressable)
- Results for 4 KB are around 6 µs. This is 6 µs total, not incremental!
Conclusions

- The Linux kernel has been adapted in preparation for new NVMs and memory-attached NVM.

- We are building upon prior advancements in PCIE IO memory subsystem technology by adding new performance-enhancing features, and have enabled IO memory as a DMA target.

- Our example driver exposes IOMEM as both a DAX-enabled block device and an mmap()'-able region.

- We show good performance between PCIe devices (the datapath avoids CPU when a PCIe switch is used).
THANKS!!

Come and visit us at booth #213

www.microsemi.com