
IO Pattern based Optimization in SSD

LU Xiangfeng
CTO, Memblaze Co., Ltd.

Flash Memory Summit 2016
Santa Clara, CA

1

IO Pattern based Optimization

•  IO patterns are important to SSD optimization
•  To determine best location to store data, optimize unnecessary

 garbage collection, reduce write amplification.
•  For fast data access, reduce the latency in future reads.

•  Enterprise applications can benefit from SSD IO
 pattern based optimizations.
•  Open source society actively pursuits application level hints as

 guidance to improve SSD performance and endurance, while
 lowering TCO.

Flash Memory Summit 2016
Santa Clara, CA

2

Optimization challenges for SSD

•  Application requirement challenges
•  SDS and cloud applications use SSD as pool. IOs from different

 applications are often mixed together and directed to SSD. SSD capacity
 continues to grow, which accelerates this trend.

•  Today’s applications often pose strict requirement for SSD access latency.
 Optimization should not sacrifice IO latency and service quality.

•  SSD design constraints challenges
•  Mapping IOs to separated flash blocks based on pattern becomes

 expensive because flash geometry changes in 3D TLC.
•  IO Optimization should intelligently adapt to different workloads to balance

 between short term target and long term target.

Flash Memory Summit 2016
Santa Clara, CA

3

IO Pattern Optimization Basic Idea

•  IO pattern tagging, detection and prediction
•  Provide necessary hints for SSD to arrange each IO properly. Hints can be

 passed down from host or learnt from history records.
•  Resource allocation coordination service

•  Because of resource limitation for flash open page, RAID buffer, overlapped
 programming IOs, a centralized coordination service is set up to manage all
 resources.

•  Intelligent scenario detection and adaption
•  Resource allocation coordination service lacks global knowledge, so a

 scenario detection unit responsible for compiling high level information, and
 instructs the coordination service to change certain strategies to adapt to
 new scenario. Flash Memory Summit 2016

Santa Clara, CA

4

Frontend IO Pattern Recognition

Flash Memory Summit 2016
Santa Clara, CA

5

 Action

Read
Read and cache
Read without cache
Read ahead and cache

Write

Write tag 0
Write tag 1
…
Write tag N-1

IO commands are sent to frontend detection and
 prediction unit.
•  Read requests, based on historical statistics of this

 application type, are tagged either need caching or
 not.

•  Write requests are tagged with different IDs based
 on LBA affinity and IO size.

•  Other requests are passed down untouched.

Host Interface

R

O

OR

W
R
W

R
W

R

W

App 1 App 2 App 3

Read cache
detection Write

IO
taggingRead ahead

controller

Write IO
pattern

recorder

IO processing

SSD
Drive

IO Requests Annotation

From standard definitions
 for IO request hints -
 T10, T13, POSIX, Linux

Flash Memory Summit 2016
Santa Clara, CA

6

Dynamically learnt from IO
 attributes or historical
 statistics - Rely on rule sets
 and machine learning
 results

Candidate stream tags

Ghost stream tags

Untagged

 Untagged IOs

 Active stream tags

Tag 1 Tag 2 Tag 3 Tag 4 Tag 5

IO

Promote the
tag

Demote the
tag

Hit tag rule Miss tag rule

IO Request Annotation Types

Flash Memory Summit 2016
Santa Clara, CA

7

Annotation Types Description

Read Frequency
If SSD internally use RAM to implements cache. With
read frequency annotation, firmware can decide if the
data is hot data and place hot data in cache.

Read Sequentiality

For sequential read IOs, drive can choose to trigger read
ahead and optimize latency. It can also trigger read
cache inside flash.
For random read IOs, drive only fetch a portion of flash
page data, save the time cost during flash read.

Write Frequency

Drive internally may use multiple storage tiers. With write
frequency annotation, firmware can choose the optimal
storage tier. Besides, it can arrange hot data and cold
data to different physical locations to improve GC
efficiency.

Write Sequentiality and Tagging

Sequential write data should be stored in a page or
neighbor pages. This can benefit GC.
Tagging is used to differentiate among IOs from different
applications, or different services. Data with different
tagging should be physically separated.

IO Priority and Latency Hints

IO priority and latency hints are used to instruct drive to
prioritize IO service quality. The drive could over-
provision certain bandwidth to favor real time and high
priority IOs.

Application Annotation
• Provides usage scenario
hints

• Differentiate among services
and applications

OS/ Driver/ Protocol
• Provides system level
knowledge

• Translate application
annotation

Drive level
• Add system level hints
• Learn certain hints from
history

Drive modules
• Choose best strategy
based on hints

Volatile Read Cache

Flash Memory Summit 2016
Santa Clara, CA

8

Invalid

Read
Flash

Clean Flush

DirtyWrite command

Write flash done

Inside drive, a volatile read cache can help IOs with high
 frequency hints. Drive can also trigger read ahead
 request if necessary.
• Read cache line size is set to 4kB to balance the line
 granularity and storage size.
• Each cache line can be in any of 5 states.

•  Invalid – Initial state.
•  Read Flash – Drive issue read request to backend, data is not

 available yet.
•  Clean – Data is available in read cache.
•  Dirty – A write request hit the cache line, data is not available yet.
•  Flushing – A write request hit the cache line and data is stored in

 cache memory, data acknowledged to host but not flushed to
 backend yet.

• Read cache can be invalidated at any time without loss
 of data. (Acknowledged data is specially handled in non
-volatile write buffer unit) ARC is used as cache
 retirement policy.

Non Volatile Write Buffer

Flash Memory Summit 2016
Santa Clara, CA

9

SSD can implement non volatile write buffer. For write IO
 requests, data can be stored in this buffer so that
 acknowledgement to host can preempt data written to
 flush. Non volatile write buffer usually uses DDR to store
 data at normal condition, and quickly flushes data to
 SLC tier in SSD upon power loss.
• IOs with hints indicating it may be written again in near
 future can hold off writing data to flash.
• With hint indicating high probability read in near future,
 data can reside in DDR without invalidation.
• Sequential write requests are aggregated before
 sending to backend. Backend can then arrange them in
 neighbor places, improving backend flash write
 efficiency and facilitating GC.

Write Buffer Allocator

IO

Write Buffer Pool

Backend

Flash Flash Flash Flash

Flash Flash Flash Flash

SLC Range

Flash Flash

Read Cache
Pool

If IO will be read later,
write buffer become read

cache after flushed to
flash

Write IO Tagging & Clustering

•  Separating write IOs from different
 applications or services

•  Tag passed down from host applications or
 OS.

•  IO tag from clustering result.
•  Place IOs with same tag together in a flash

 block or recycle unit
•  IOs with same tag are likely to be retired at same

 time. So save GC’s efforts to move data.
•  Require a lot of open blocks that can accept write

 requests simultaneously.
•  For pure random write IOs, assign a special tag to

 them.

Flash Memory Summit 2016
Santa Clara, CA

10

SSD

App 1 App 2 Random IOs

Frontend
Clustering Unit

Backend

Flash
Group

1

Flash
Group

2

Flash
Group

3

Auto Adjustment of Bandwidth

•  Only limited numbers of flash blocks can be opened at a time due to
 physical limitation

•  Today’s nand flash is prone to error if the block is not fully programmed.
 SSD need to cache quite a lot of data in DDR.

•  SSD need to flush all data acknowledged but not fully written to flash. So
 the dirty data size should be small enough.

•  Adjust the flash group mapping relation with tag to optimize flash
 bandwidth

•  With limited open block resource, the mapping between open flash block to
 tag should not be static. When the write intensity for a tag is changed, its
 occupancy of flash block should also change. This policy can maximize the
 flash channel bandwidth.

Flash Memory Summit 2016
Santa Clara, CA

11

Auto Adjustment of Bandwidth (Cont’d)

Assign tagged IO requests to flash lun
 groups
• A frontend unit controls the bandwidth for write requests
 in each tag and the GC bandwidth. This policy
 coordinates each user application writes and GC writes
 intensity.
• Partition flashes into flash lun groups. Each lun group
 serves one tag, if it has additional bandwidth, it can
 serve other tag types. This policy keeps number of open
 flash blocks low and maintain all open blocks busy if
 necessary.
• Regularly rotate the map between tag and flash lun
 group. This policy ensures the data in each tag category
 is evenly distributed among all flash lun group. GC can
 then transfer data efficiently.

Flash Memory Summit 2016
Santa Clara, CA

12

Flash
Group

1

Flash
Group

2

Flash
Group

3

Flash
Group

4

App 1
Host

Writes

App 2
Host

Writes

GC Type 1
Writes

GC Type 2
Writes

Write
Source

Coordinator

Mapping
Preference

Matrix

Rotate
Regularly

Optimize Flash Access Behaviors

•  Use of latency and priority hints
•  For host read with high priority or low latency, can place the request in high

 priority queue so that it can be served quickly.
•  Use program suspension to temporarily suspend an in progress program

 command execution inside flash packet and let a read request precedes.
•  Use of sequentiality hints

•  For sequential read requests, if they are stored in physically contiguous
 address, then use (multiplane) page read to read out all data. For random
 read requests, only instruct flash read the necessary part inside a page.

•  Data can be reside in nand flash cache registers for later usage.

Flash Memory Summit 2016
Santa Clara, CA

13

Scenario detection and adaption

Use scenario detection and feedback to
 adjust SSD’s configuration lively
§ User can set their expectation on SSD, SSD can
 also dynamically learn user behavior via a statistics
 collection unit.
§ Decision unit can aggregate these knowledge and
 configure the execution unit to adapt to user’s
 current scenario.

§  Set certain parameters in each execution unit. (i.e.
 Adjust cache policy paramters)

§  Configure the system from a bunch of optional policy.
 (i.e. If user prefer low latency rather than high
 throughput, or SSD learns it via hints, then SSD can
 adjust the backend queue policies to reduce latency.)

Flash Memory Summit 2016
Santa Clara, CA

14

Decision
Unit

Statistics
Collector

Policy
Sets

Execution
Unit

Flash
Channel

Bandwidth
OP Policy

GC Block
Reclamation

and OP
Policy

Tier Policy Cache Policy...

Conclusion

•  IO pattern tagging, detection and prediction can benefit SSD’s
 design and better meet user’s requirement.

•  Through structural design of SSD, the IO pattern hints can guide
 SSD optimization. Structural design coordinates different
 modules inside SSD to maximize their utility.

•  Scenario detection and adaption can help to tune the overall
 configuration to adjust SSD working behavior best fits user
 scenario.

Flash Memory Summit 2016
Santa Clara, CA

15

Promotion

•  Please visit our booth at #319.
•  LU Xiangfeng
•  CTO, Memblaze Co., Ltd.

Flash Memory Summit 2016
Santa Clara, CA

16

