A Comprehensive Approach to Flash-SSD Quality Management for Enterprise Storage

Jung H. Yoon, James Gathman, David Verburg
IBM Supply Chain Engineering

Dean Sciacca
IBM Flash SSD Development
Outline

- Flash-SSD E2E Quality Management Approach & Concept
- Flash Quality
- Firmware Quality
- SSD Qualification Process
- SSD Quality Process
- Summary
3D NAND driven scaling enabling aggressive $/GB reduction thru 2020
3D TLC endurance gains enabling significant Enterprise & Hyperscale SSD market growth
Enterprise storage customers require robust Storage System Quality performance driving continuous focus on Flash-SSD E2E quality

Source – Gartner, March 2016
Quality Shift Left

It’s vital to detect quality problems as quickly as possible:

- loss of customer satisfaction and loyalty
- delayed product shipments
- recall of defective product
- higher costs in warranty claims

Comprehensive approach towards the management of Flash-SSD supplier quality for enterprise storage applications <= ‘Shift Left’ Quality driver
SSD Quality Equation

1. Flash Quality
 1) Flash component reliability
 2) Flash Management
 3) Reliability Monitoring
 4) Fab quality, wafer/die sort, trims
 5) Stacked package quality

2. Firmware Quality
 1) FW qualification/quality management
 2) Error detection & recovery
 3) Key features – Wear Leveling, WA
 4) 1st time data capture

3. SSD Qualification Process
 1) SSD Qualification methodology
 2) Characterization & reliability modeling
 3) EMI/thermal modeling & simulation
 4) Power Hold-up architecture

4. SSD Quality Process
 1) Quality Organization & major imperatives
 2) Manufacturing test
 3) Manufacturing quality process
 4) Corrosion prevention/mitigation
 5) Quality Scorecard

Quality summit as key vehicle to drive quality improvements across core SSD suppliers – adopt systematic benchmark/methodologies

Flash Memory Summit 2016

© 2016 IBM Corporation
1. Flash Quality

- Flash Design
- Fab Quality
- Wafer Test
- Package & Assembly
- Package Test
- Manufacturing SPQL Quality
- Field Quality
Flash Management Key Directions

2D NAND
- Pre-Read Tuning
- Table based (PE cycles)
- ECC
 - BCH Centric
- Vt Offset retries
- RAID/Higher Level Code
- Block Retirement

3D NAND
- Pre-Read Tuning
- Table based (PE cycles)
- ECC
 - LDPC Centric
- Soft Decode methods
- Dynamic Trims
- Vt Offset retries
- Calibrated Reads
- RAID/Higher Level Code
- Plane/Die Protection
- Block/Page Retirement
Flash Component Qualification & Endurance RDT Approaches

Flash Component Centric

- Qual methodology and goals based on JESD47 standard
- One-size fits all methodology
- NAND component qualification/quality centric

SSD Use-case based

- Tailor Flash Qualification test conditions & goals to meet intended SSD usage requirements
- Align NAND component qualification to emulate SSD operating conditions
- FW policies emulated at NAND level

Endurance RDT

- Flash accelerated Cycling thru EOL – monitor cycling endurance by verifying if process/trims intrinsically meet datasheet. Accelerate defect related failure modes via high voltage stressing
- Endurance RDT – validate flash media’s endurance capability thru EOL. Functional fails, NAND Block fails, UBER data errors
‘Supplier of Gap’ & ‘Best of Breed’ supplier are based on scoring from each parameter category (not one supplier)
2. Firmware Quality

FW Qualification

Design Coding
- Run unit tests - verify each function
- Run code under the software simulator environment to verify the behavior of each module
- Monitor security code quality

EVT
- Engineering Verification Test
 - Verify drive functions and behavior with FPGA/ actual drive
 - Conduct Performance testing

EVT Review
- Determine if ready to proceed to DVT phase
- Review EVT results for firmware quality, SoC, PCBA and mechanical

DVT
- System tests are conducted by supplier QA team
 - Compatibility testing with OEM system
 - Performance testing as the drive level and the system level
 - RDT - Reliability testing with various Power, Temperature

DVT Review
- Determine if product can be shipped to OEM
 - Review DVT results
 - Judge if it can proceed PQT phase

Early verification System Test – confirm compatibilities & stability

* EVT - Engineering Validation Test: Build several units that function as expected, meeting all functional requirements
* DVT - Design Validation Test: Build lots of units that function as expected, meeting all functional requirement
Data Integrity: Error Detection and Recovery

Data is protected thru several levels of checks and corrections

- **Data in NAND** is protected by
 - NAND BCH-ECC
 - Read Level Correction
 - Corrective Read
 - RAID across NAND
 - FW background data integrity scans

- **Data between Host and NAND** is protected by Data-path Protection, Parity and Power-loss protection
 - Internal Controller Data-paths & Memories
 - External DRAM/buffers
SSD Qualification Methodology

<table>
<thead>
<tr>
<th>Phase</th>
<th>Purpose</th>
<th>Typical Confirmation Items</th>
</tr>
</thead>
</table>
| EVT | * Confirm basic functionality for key items | * Mechanical (shock & Vib/Temperature distribution)
* Electricity (Power/Signal Integrity)
* NAND Control function/ Parameter tuning
* Firmware Function test
* SoC Phy verification
* Performance test |
| DVT | * Confirm drive readiness by prototype
* Risk assessment for transition to the mass production | * Verification assurance test (Power/ Transport Jitter/ Weight/ Dimension)
* Environment (Temperature/ Humidity/ Shock & Vib/ Packaging/ESD/EMI)
* RDT - Reliability test
* Firmware Function test
* Compatibility test
* Performance test
* Safety/EMI standard certification
* Component parts
* PCBA evaluation
* Manufacturing Process Test
* Productivity confirmation |
| PQT | * Product readiness and Productivity confirmation | * Equipment/Jig
* In-Process Quality/Yield
Repair system set up and validation |

Abbreviations:
PQT – Production Qualification Test,
RDT – Reliability Demonstration Test,
ORT - Ongoing Reliability Test
SSD Qualification E2E Ownership

1. Flash Characterization and Verification, Flash Management Development

2. ASIC Validation
 Electrical Integration
 Thermal & Mechanical Validation

3. FW unit testing
 FW Qualification and Regression
 Customer System Testing

4. SSD Reliability Modeling
 Product Assurance
 SSD Quality & Reliability

5. Mass Production Readiness
 Factory Validation
 Factory Quality Monitoring Process

© 2015 IBM Corporation
SSD Reliability Model

1. Early Life Fails – Flash particle driven defects, Firmware quality
2. Constant Failure rate – Random defect driven
3. Need to focus on Mid Life/End of Life Reliability failure modes – Flash reliability, Components, Sub-tier quality focus
SSD Qualification Process

- S1: SSD Qualification methodology/requirement
- S2: SSD Characterization & Reliability modeling
- S3: EMI/Thermal modeling & Validation
- S4: Power hold-up architecture

Legend:
- Supplier of Gap
- Best of Breed
4. SSD Quality Process

SSD Manufacturing Test Flow

IQC → PCBA assembly → Automated Optical inspection → Automated x-ray inspection → In Circuit Test

Functional Test 2 → Burn In → Functional Test 1 → Pre Test → Visual Inspection

Final Test → Final Inspection & customer lable → Shipping

ORT: Ongoing Reliability Test

Out of Box Audit
Industry Consistency in how to handle EOL

1) PFA (Predictive Failure Alert) based on rated PE cycles & Data Retention target
2) Continue use of drive upon PFA (read & write). Read only mode – determine when to stop use of drive based on spare block %, block retirement based on OP. Need graceful transition into read only mode
3) Combination of 1) & 2)
SSD Quality Process

Q1: Major Quality Imperatives Q2: Mfg Test Overview Q3: Innovation Item Q4: Mfg Quality Process Q5: Corrosion prevention Q6: SSD Quality scorecard

Supplier of Gap Best of Breed
Summary

- Enterprise Storage growth driven by 3D NAND density, reliability improvements, and $/GB reduction in 2016-2020. Enterprise customers continue to require strong Storage System Quality performance enabled by robust Flash-SSD E2E quality

- A comprehensive approach towards the management of Flash-SSD supplier quality for enterprise storage applications is presented

- Systematic approach focusing on 4 areas critical to Flash-SSD quality – 1) Flash Quality, 2) SSD Qualification methodology, 3) Firmware Quality and 4) SSD Quality. We further apply detailed breakdown and benchmark, thus driving industry best practices and ‘Shift Left’ quality imperatives.