NAND Flash Basics & Error Characteristics

Why Do We Need Smart Controllers?

Thomas Parnell, IBM Research - Zurich
Agenda

• Part I. NAND Flash Basics
 • Device Architecture (2D + 3D)
 • SLC, MLC & TLC
 • Program/Read/Erase Procedure

• Part II. Error Characteristics
 • Program/erase cycling stress
 • Cell-to-cell Interference
 • Data Retention / Read Disturb
 • Programming Errors
 • 2D vs. 3D Reliability Comparison
Part I: NAND Flash Basics
NAND Flash Architecture (2D)

- A block of planar NAND Flash consists of a grid of cells connected by word lines (WLs) and bit lines (BLs)
- Data is programmed/read from the device page-by-page (~16KB)
- Every WL in the block contains:
 - 1 page (SLC)
 - 2 pages (MLC)
 - 3 pages (TLC)
- Within a WL, pages can be further interleaved so that each WL contains 2/4/6 pages ("Even-Odd BL Architecture")
A block consists of vertically-stacked layers of NAND Flash cells

Each layer consists of a grid of cells connected by WLs and BLS
Single Level Cell (SLC)

2 States (1 Erase + 1 Pgm)

= 1 bit of information per cell

Multi Level Cell (MLC)

4 States (1 Erase + 3 Pgm)

= 2 bits of information per cell

= 2x capacity of SLC!
Triple Level Cell (TLC)
8 States (1 Erase + 7 Pgm)
= 3 bits of information per cell
= 1.5x capacity of MLC = 3.0x capacity of SLC
Incremental Programming

(a) Erased State

(b) First programming pulse

(c) N programming pulses

Electrons tunnel into FG

ISPP Procedure

START

Apply Programming Pulse

Verify most cells have V_{TH} higher than V_{TARG}

PASS

FAIL

END

$t_{\text{PROG}} \sim 1500 \text{us}$
MLC Two-Pass Programming

Data is programmed to the device one page at a time

The cells are either left in the erased state of programmed to an intermediate state depending on the lower page data.

An intermediate read determines the previously programmed lower page data and the cell distribution for the WL is “finalized” using the upper page data.
Reading Data Back (MLC)

• Lower page can be read using a single read voltage (V_B)
• Upper page can be read using a pair of read voltages (V_A, V_C)
• A page read typically takes up to 100us
Erasing

(a) Fully prog. State

(b) First erase pulse

(c) N erase pulses

Data is erased one block at a time. An individual page cannot be erased.

START

Apply Erase Pulse

Verify most cells have V_{TH} less than V_{EV}

PASS

END $t_{ERASE} \approx 5000 \mu s$

Flash Memory Summit 2016
Santa Clara, CA
Part II: Error Characteristics
Read Errors

- Broadening of V_{TH} distributions due to noise can lead to read errors
- What are the main sources of noise?

![Diagram showing read errors](image_url)
Program/Erase Cycling Stress

- Repeated application of program/erase (P/E) pulses leads to degraded reliability of the underlying NAND flash cells.
- The measured raw bit error rate (RBER) increases as a function of P/E cycles.
- Strong error-correction codes must be implemented on the controller to be able to deal with increased RBER.

1 in 100 bits are in error

Different blocks exhibit different trajectories
Cell-to-Cell Interference

• Threshold voltage of “victim” cell is strongly affected by programming of neighboring “aggressor” cells \(\rightarrow \) can the controller compensate?
Data Retention

- Over time electrons can escape from the programmed flash cells, causing a loss of threshold voltage
- This can cause a large increase in RBER unless the controller can shift the read voltage to compensate for charge loss
- The data retention effect is temperature dependent (charge escapes faster at higher temperature)
Read Disturb

- When reading a particular page in a block of NAND Flash, a voltage is applied to all other WL in order to "deselect" them.
- This applied voltage can affect the V_{TH} distributed of the unselected WLs.
- If a block is read from too many times, the RBER will increase to a point that the ECC is no longer able to correct.
- The controller must be able to manage such effects.

Dominant effect of read disturb is seen on Erase state
Programming Errors

- Degradation of erase state can cause error propagation during the two-pass programming procedure → switch to 1-pass?

Cells are programmed to the wrong state!
2D vs. 3D Reliability Scorecard

<table>
<thead>
<tr>
<th>Reliability Issue</th>
<th>2D</th>
<th>3D</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program/Erase Cycling</td>
<td>TLC endurance: ~100 cycles</td>
<td>TLC endurance: >1000 cycles</td>
<td>Increased cell dimensions enable new applications for TLC Flash</td>
</tr>
<tr>
<td>Cell-to-cell Interference</td>
<td>X/Y-direction</td>
<td>Z-direction</td>
<td>Controller management required</td>
</tr>
<tr>
<td>Data Retention</td>
<td>Years (consumer) Months (enterprise)</td>
<td>Fast Initial Charge Loss</td>
<td>Controller management required</td>
</tr>
<tr>
<td>Read Disturb</td>
<td>Affects both</td>
<td></td>
<td>Controller management required</td>
</tr>
<tr>
<td>Programming Errors</td>
<td>2-pass programming</td>
<td>1-pass programming</td>
<td>Improved algorithm can remove programming errors entirely</td>
</tr>
</tbody>
</table>
Conclusions

- NAND Flash is currently unrivalled technology in terms of the performance/cost trade-off
- However, it is inherently unreliable and cannot be used without a controller providing additional functionality
- What do we require of a controller?
 - Media management / signal processing
 - Powerful error-correction
 - Data placement/management algorithms
 - Efficient FPGA/ASIC/firmware implementations