NAND Flash Media Management Algorithms

Erich F. Haratsch
Seagate
Outline

- NAND Flash Scaling Trends
- ECC
- Hard and Soft Decision Decoding
- Read Voltage Calibration
- Redundant Silicon Elements
- Summary
NAND Scaling Trends

- 3D NAND may extend beyond 100 layers
- 3D NAND extends scaling towards 1Tb die capacity

- Required ECC for SSD-grade endurance exceeds 60b/1kB for 2D TLC
- 3D NAND relies on strong ECC to make TLC mainstream for SSDs
<table>
<thead>
<tr>
<th>Impairment</th>
<th>Effect</th>
<th>Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program/Erase Cycling</td>
<td>Voltage shift/widening</td>
<td>ECC Read Voltage Calibration</td>
</tr>
<tr>
<td>Retention</td>
<td>Voltage shift/widening</td>
<td>ECC Read Voltage Calibration</td>
</tr>
<tr>
<td>Media Defects</td>
<td>Page, block, plane, die failure</td>
<td>Redundant Silicon Elements</td>
</tr>
</tbody>
</table>

- Presented Flash media management algorithms can help to mitigate Read Disturb and Intercell Interference as well
ECC: BCH Codes

- Conventional SSD Controllers use BCH Codes
- BCH codes are algebraic codes, defined by:
 - Code word length
 - Error correction capability per code word
 - For example: 40bit error correction over 1kB code words
- Many SSD controllers implement BCH codes with 1kB code words
BCH codes typically support hard-decision decoding only

Error recovery by read retry

Individual hard decision decoding attempts for different read voltages
NAND Flash Memory compares read voltage with read reference voltage to generate hard decision.

- One reference voltage for MSB page, 2 reference voltages for LSB page
- Hard decision is used for decoding
Voltage Distribution Shift and Widening

- P/E cycling increases right tails of distributions
- Retention increases left tails of distributions
- Default read reference voltages are misplaced as a result
Read Retry Algorithm

- Default read reference voltage optimized for typical condition
- Read retry algorithm cycles through several individual read decoding steps
- Retry steps use read reference voltages optimized for program/erase cycling, retention, read disturb, etc.
Low-Density Parity Check (LDPC) Codes

- Defined by a sparse (low density) parity check matrix H
- Are represented with a bi-partite graph
- Support hard and soft decision decoding

$$H = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

Bi-Partite Graph:

bit nodes
check nodes
Soft Decision Decoding

- Multiple read operations with different reference voltages to generate soft decision
- LDPC decoder uses soft decision during error recovery
Soft-decision LDPC decoding has significantly better error correction than BCH decoding
Soft LDPC Levels

- Sequence of retries with varying read voltage settings
- Computation of soft information (LLRs) based on multiple read decisions

Read voltage placements for soft LDPC:

Default read voltage

Soft LDPC read voltages
Optimizing LDPC Error Correction

- LDPC code parameters and decoding algorithm need to be optimized for good performance at low error rates
Adaptive Code Rates

- **Beginning of Life**: use less ECC to increase overprovisioning
- **End of life**: increase ECC to maintain reliability

Conventional Error Correction: Stores fixed ECC in spare field

Adaptive ECC (BOL): Stores ECC in a portion of spare field and increase OP

Adaptive ECC (EOL): Stores ECC in spare field and uses some of the NAND page

Adaptive ECC allows for more free space @ BOL = More OP and less write amplification
Switching Code Rates

- Multiple LDPC codes cover wide RBER range
- As NAND flash ages, controller switches to the next stronger code
- Read performance improves, since stronger LDPC codes decode data faster
Optimized read voltages reduce retry rate and extend endurance.

Optimum read voltages shift as a function of endurance, retention and read disturb.
Media Failures

- Pages, blocks, planes or the whole die can fail
- ECC cannot recover data from such catastrophic failures
- Need RAID-like protection inside SSD
RAISE™: Redundant Array of Independent Silicon Elements

- RAID-like data protection within the drive
- Write data across multiple dies with additional protection
- Corrects full page, block or die failures when all soft LDPC steps fail
SSD Controller: Block Diagram

- **Host Interface**
 - **Host**
 - **FTL**
 - **LDPC Encoder**
 - **LLR Generation**
 - **LDPC Decoder**

- **Data Management**
 - **Firmware: Data and Media Management**

- **ECC**
 - **Write path**
 - **Read path**

- **Read/Write**
 - **Flash Interface**
 - **NAND Flash devices**
Multi-Level Error Correction

- Hard-decision LDPC decoding is on-the-fly error correction method
- Progressively apply stronger decoding methods such as soft-decision LDPC decoding and signal processing
- Specialized noise handling techniques for P/E cycling, retention, read disturb, etc.
- Optimize time-to-data
Conclusion

- Latest memory geometries demand intelligent NAND management features
- 3D NAND will still rely on strong ECC and advanced NAND management features to make TLC mainstream for SSD applications
Thank You! Questions?

Visit Seagate Booth #505

Learn about Seagate’s ever-expanding portfolio of SSDs, Flash solutions and system level products for every segment

www.seagate.com/flash