Designing With On-Die ECC for Embedded Applications

Sathyanath Subramanian
Product Line Manager, Embedded Business Unit
Micron Technology, Inc.

©2015 Micron Technology, Inc. All rights reserved. Information, products, and/or specifications are subject to change without notice. All information is provided on an "AS IS" basis without warranties of any kind. Statements regarding products, including regarding their features, availability, functionality, or compatibility, are provided for informational purposes only and do not modify the warranty, if any, applicable to any product. Drawings may not be to scale. Micron, the Micron logo, and all other Micron trademarks are the property of Micron Technology, Inc. All other trademarks are the property of their respective owners.
Agenda

- Embedded Applications and Trends
- SLC NAND in Embedded Applications
- Parallel NAND vs. SPI NAND
- ECC Requirements and Trends
- On-Die ECC With Micron EC²NAND
- Summary
Embedded Applications and Trends

- Embedded devices are everywhere with several applications across multiple segments
- Multicore CPUs and increasing appetite for memory requirements
- Low-power and low-cost requirements are driving innovation
- System designers and architects have several memory options to choose from based on their application and go-to-market requirements

- Micron offers best-in-class memory solutions, engineered for YOUR innovation
Based on single-level cell technology (SLC) with high Endurance capability

High-performance discrete NAND offered in both low and high densities (1Gb to 512Gb+)

SLC NAND market is spread across several embedded applications
SLC NAND Is Everywhere

Connected Home
- Set-Top Box
- Home Networking
- Home Automation
- Wireless Modem

Consumer
- Digital Television
- Digital Still Camera
- Wearable
- Home Audio Hi-Fi
- Blu-Ray Disc Players
- OTT

IMM
- Factory/Building Automation
- POS
- Medical
- Energy
- Transportation
- Aerospace & Defense
- Surveillance

Automotive
- Infotainment
- Powertrain
Parallel NAND vs. SPI NAND

- **Legacy interface**
 - Higher BOM cost for the system
 - Larger package size
 - Secure

- **Simplified design with 4-signal SPI protocol**
 - Low overall BOM cost for the system
 - Reduced package size
 - Lower cost
 - Fast write performance
 - Secure
Why SPI NAND?

- New applications like wearables, DTV, STB, and routers/gateways are showing interest in SPI NAND
 - Low pin count for simpler design
 - Small size for small form factor design
- SPI NAND is a great solution to meet these needs
• Error correction code (ECC) requirements vary depending on cell technology and lithography shrinks
• SLC has the lowest ECC requirements due to high reliability
• ECC circuitry also gets complex depending on the ECC algorithm and the ECC bits
On-Die ECC With Micron EC²NAND

<table>
<thead>
<tr>
<th>Features</th>
<th>Micron EC²NAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>High performance</td>
<td>✔</td>
</tr>
<tr>
<td>Parallel & SPI interface</td>
<td>✔</td>
</tr>
<tr>
<td>1.8V & 3.3V support</td>
<td>✔</td>
</tr>
<tr>
<td>Wide temperature offerings</td>
<td>✔</td>
</tr>
<tr>
<td>Security features</td>
<td>✔</td>
</tr>
<tr>
<td>Drop-in compatibility</td>
<td>✔</td>
</tr>
<tr>
<td>Ease of use</td>
<td>✔</td>
</tr>
<tr>
<td>Low/mid density offerings</td>
<td>✔</td>
</tr>
</tbody>
</table>
Summary

• SLC NAND is the most reliable high-performance discrete NAND; hence, it is widely adopted in several embedded applications
• SPI NAND is becoming more popular due to simpler design; also suitable for cost-sensitive applications
• Micron EC²NAND offers built-in ECC and reduces burden on host for ECC needs, reducing design complexity for system designers

• Micron offers a very wide spectrum of SLC NAND, engineered for YOUR innovation