Choose the Right NAND Flash Solution for Your Embedded Application

Aravind Ramamoorthy
NAND Product Line Director
Micron Technology, Inc.
Agenda

• Embedded Market Overview
• Key Applications
• NAND Solutions
• Feature Comparison
• Conclusion
Embedded Market Trends

Automotive
- Transition to a mobile living space; fully connected with autonomous driving
- V2V/V2I communications
- Accelerated adoption of new technologies

Industrial Multi-Market
- Internet of Things (IoT) driving smarter connected devices
- Distributed data analytics and storage
- Adoption of mobile and PC derived platforms

Consumer
- Adoption of UHD/4K expands across applications
- Wearable applications are booming
- Increased mobility and smaller form factors

Connected Home
- Smarter homes for entertainment, security, and energy management
- Traditional set-top box (STB) market faces competition from over the top (OTT) and cloud-based networks
- Rapid growth into developing countries
Discrete vs. Managed NAND

Discrete NAND
- SLC, MLC, TLC
- Wear Leveling
- Command/Block Management
- ECC
- Driver

Managed NAND
- SSD, e.MMC, eUSB, CF
- Wear leveling, CMD/Block mgmt, NAND error mgmt

ECC FREE
- Serial NAND, EC²NAND
- Wear Leveling
- Command/Block Management
- ECC
- Driver
Managed NAND easy to design but more expensive

- uC and package adders (MCP, caps) large portion of BOM cost vs. discrete NAND at low densities

Discrete NAND can achieve similar/higher performance vs. e.MMC with optimized software
Discrete NAND Software Options

NAND FS

Application
Flash File System (e.g. JFFS, YAFFS, UBIFS)

NAND

Flash wear leveling, bad block management, power loss managed by file system

Block FS

Application
Block File System (e.g. EXT4)

Flash Translation Layer
Flash Low-Level Driver

NAND

Requires FTL and LLD
Same software stack for managed and discrete NAND
Performance

- Comparable performance between discrete NAND and eMMC if software is optimized and host can manage ECC.

Based on Amlogic M8 Platform; 50 MHz async mode
Sequential Performance @ 128K chunk size and Random Performance @ 4K chunk size
Power Consumption

Active (W)

- PCIe: 4 W
- SATA: 3 W
- UFS: 1.2 W
- eMMC: 0.8 W
- NAND: 0.2 W

Seq Write (nj/bit)

- PCIe: 2.5
- SATA: 2.75
- UFS: 2
- eMMC: 2
- NAND: 1

Standby (mW)

- PCIe: 60 mW
- SATA: 60 mW
- UFS: 3 mW
- eMMC: 1 mW
- NAND: 0.5 mW

Random Write (mj/KIOPS)

- PCIe: 28 mj/KIOPS
- SATA: 40 mj/KIOPS
- UFS: 50 mj/KIOPS
- eMMC: 60 mj/KIOPS
- NAND: 60 mj/KIOPS
Reliability Considerations

- Power Loss Recovery

- SLC mode

- Reflow Data retention
Summary

• Discrete NAND is a good option for cost-sensitive applications
• Managed NAND is better for ease of design/time to market
• Discrete NAND performance is equal to managed NAND if software is optimized
 • Robust power-loss protection, SLC mode, and reflow capability needed to use discrete NAND