Modelling a High-Performance NVMe SSD constructed from ReRAM

Stephen Bates, PMC
Mehdi Asnaashari, Crossbar Inc
Lorenzo Zuolo, PMC
• High performance NVM Express SSD controller
• Up to 32 ONFI/Toggle flash channels
• DDR3/4 DRAM interface
• Flexible LDPC ECC
• Data Integrity, encryption etc.

The PMC Flashtec evaluation card with Micron NAND and DDR. No ReRAM attached (yet) unfortunately ;-)
Crossbar RRAM Memory

NAND Flash

- Page Program (8~16KBytes)
- Block Erase (4~8MBytes)

No possibility to update a page
Requires Erase Operation
10-30% Over-Provisioning
Write Amplification of 2.5-3

Crossbar RRAM

- Page Write (e.g. 256-512 Bytes)

Every page can be updated
No Erase Operation is Required
No Over-Provisioning
Write Amplification of 1
Crossbar RRAM Memory

<table>
<thead>
<tr>
<th></th>
<th>NAND</th>
<th>ReRAM</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page write</td>
<td>1,000 us</td>
<td>2 us</td>
<td></td>
</tr>
<tr>
<td>Block Erase</td>
<td>10,000 us</td>
<td>0 us</td>
<td>Not required</td>
</tr>
<tr>
<td>Read latency</td>
<td>100 us</td>
<td>1 us</td>
<td></td>
</tr>
<tr>
<td>Write cycles</td>
<td>1,500</td>
<td>100,000</td>
<td></td>
</tr>
<tr>
<td>Over-writes</td>
<td>N/A</td>
<td>Allowed</td>
<td>No Write Amp.</td>
</tr>
<tr>
<td></td>
<td>Resulting in Write Amplification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page size</td>
<td>16-32 KB</td>
<td>0.2-0.5 KB</td>
<td>Small is better</td>
</tr>
<tr>
<td>Retention</td>
<td>3 yrs @ 25C</td>
<td>10 yrs @ 85C, after 10K cycles</td>
<td></td>
</tr>
<tr>
<td>Scaling</td>
<td>Limit ~20nm</td>
<td><10nm</td>
<td></td>
</tr>
</tbody>
</table>
SSD Explorer

• C simulation of SSD controller, FW, NAND and DRAM
• Inputs include NAND topology, FTL algorithms, ECC, RBER, DDR timings
• Outputs include bandwidth, IOPS, latency
• Calibrated against real SSD data
QD=1 Read Latency

- Queue Depth = 1
- 256B LBA
- Random Reads
- NVMe Protocol
- MSI-X is not simulated (i.e. polling mode)
QD=1 Read Latency
QD=1 Read Latency

Flash Memory Summit 2015
Santa Clara, CA
QD=1 Read Latency Results

- Minimum Latency = 10.4 us.
- Average Latency = 12.05 us.
- 99.99% Latency = 15.6 us.
- 83000 IOPs ~= 22MB/s
QD=16 Read Latency

- Queue Depth = 16
- 256 to 4096 Byte LBA
- Random Reads
- NVMe Protocol
- MSI-X is not simulated (i.e. polling mode)
QD=16 Read Latency

Average Read Bandwidth [QD=16]

Average Read Latency [QD=16]
QD=16 Read Latency Results

• Average Latency = 33/46 us (256/4096B).

• Bandwidth = 100/1500 MB/s (256/4096B).

~33us Read Latecncy at QD=16!
NVM Express

- Although the NVM Express driver is really good it does have issues as t_read drops.

- For example MSI-X service times are non-deterministic in Linux and can contribute to outliers.

- Polling modes may be needed to enhance NVMe for NG-NVM

Approximately 600,000 consecutive 4KB random reads from PMC Flashtec NVRAM card using Ubuntu and 3.13.0 in-box NVMe driver. FW time-stamping shows latency outliers are not from the drive but come from MSI-X handling.
Next Steps

• **Read/Write workloads.** The symmetric access times and lack of erase will help here.

• **Optimizations.** Currently just dropping in ReRAM. Need to retune SSD FW to increase utilization.

• **Real ReRAM!**
Conclusion

• NG-NVM is coming and will enable extremely low latency PCIe attached SSDs
• NVM Express is a great way to talk to NG-NVM
• Low consistent latency at QD=1
• OS and Driver latencies now dominate both average and outliers. Need to address!