Highly Reliable SSDs for Enterprise Storage with Dynamic V_{TH} Optimization and Auto Data Recovery

Atsuro Kobayashi, Tsukasa Tokutomi, Masafumi Doi, Shogo Hachiya, Shuhei Tanakamaru and Ken Takeuchi
Chuo University
Outline

- Introduction
- Read Level Shifting [1]
- Dynamic V_{TH} Optimization (DVO) [2]
- Auto Data Recovery (ADR) [2]
- Summary

Outline

- Introduction
- Read Level Shifting
- Dynamic V_{TH} Optimization (DVO)
- Auto Data Recovery (ADR)
- Summary
Error of NAND Flash Memory

Electron injection

Electron ejection

of cells

V_{TH} is increased due to program and read disturb.

V_{TH} is decreased due to data retention.
The amounts of V_{Ref} shift are increased as the retention time increases.

The optimal V_{Ref}'s are different among ‘A’ to ‘G’ states. [2]
Outline

- Introduction
- Read Level Shifting
- Dynamic V_{TH} Optimization (DVO)
- Auto Data Recovery (ADR)
- Summary
Read Level Shifting [1]

- The V_{Ref} is fixedly shifted down when the ECC fails to correct errors.

\[V_{\text{Ref1}} - \Delta V_1 \quad V_{\text{Ref2}} - \Delta V_2 \quad V_{\text{Ref3}} - \Delta V_3 \]

Problem of Read Level Shifting

- Measured V_{Ref} shift differs among states, ‘A’ to ’G’ during the data-retention.

Outline

- Introduction
- Read Level Shifting
- Dynamic V_{TH} Optimization (DVO)
- Auto Data Recovery (ADR)
- Summary
Dynamic V_{TH} Optimization (DVO) [2]

- Dynamic V_{TH} Optimization is combination of V_{TH} Space Control and Adaptive V_{Ref} Shift.

Adaptive V_{Ref} Shift (AVS) [2]

- AVS selects the optimal V_{Ref} for each state based on the retention time.

The retention time is estimated by the BER and the write/erase cycles. [3]

Errors are decreased by using V_{TH} Space Control.

V_{TH} Space Control (VSC) [2]

Dominant errors are decreased.

Method of Controlling Space of V_{TH} Distribution.

The population of ‘1’ or ‘0’s can be increased by V_{TH} Space Control.

Effects of V_{TH} Space Control (VSC)

- Data-retention errors of ‘C’ and ‘E2’ are decreased.

Table

<table>
<thead>
<tr>
<th># of cells</th>
<th>E1</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E2</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>></td>
<td>></td>
<td>></td>
<td>></td>
<td>></td>
<td>></td>
<td>></td>
<td>></td>
</tr>
<tr>
<td>C</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
</tr>
<tr>
<td>D</td>
<td>></td>
<td>></td>
<td>></td>
<td>></td>
<td>></td>
<td>></td>
<td>></td>
<td>></td>
</tr>
<tr>
<td>E2</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1Xnm, TLC, Write/erase cycle: 200, $T_{Retention}$: 28 days

Figure

- DVO (AVS + VSC)
- V_{Ref} shift

Reference

By using AVS and VSC, 80% BER reduction is achieved compared with Read Level Shifting.

- No V_{Ref} shift
- Asymmetric coding [4]
- Read Level Shifting [1]
- Adaptive V_{Ref} Shift
- AVS + VSC

1Xnm, TLC, @85degC
Write/erase cycle : 200
Outline

- Introduction
- Read Level Shifting
- Dynamic V_{TH} Optimization (DVO)
- Auto Data Recovery (ADR)
- Summary
Read Hot Data and Read Cold Data

- A high locality exists among read data.
- V_{TH} is increased in read hot blocks.
- Data-retention occurs in blocks with cold data.

Auto Data Recovery [2]

- Auto Data Recovery mixes both hot and cold data in the same block to compensate both errors.

1Xnm, TLC, @85degC, Write/erase cycle: 1k

Data retention error is dominant.

V_{TH} increase and decrease are balanced.

Read disturb error is dominant.

-15% -18%

Read cold block
Read hot block
Read warm block

Outline

- Introduction
- Read Level Shifting
- Dynamic V_{TH} Optimization (DVO)
- Auto Data Recovery (ADR)

Summary
Summary

Summary Table

<table>
<thead>
<tr>
<th>Technique</th>
<th>BER Reduction</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read level shifting [1]</td>
<td>Baseline</td>
<td>• No Overhead</td>
<td>• Lower Reliability</td>
</tr>
<tr>
<td>Adaptive V_{Ref} Shift [2]</td>
<td>-61%</td>
<td>• Higher Reliability</td>
<td>• Slower Read</td>
</tr>
<tr>
<td>Dynamic V_{TH} Optimization [2]</td>
<td>-80%</td>
<td>• Faster Read</td>
<td>• Table Overhead</td>
</tr>
</tbody>
</table>

D.R. : Data Retention, R.D. : Read Disturb

Thank you for your attention

This work is partially supported by CREST/JST