How to Extend 2D-TLC Endurance to 3,000 P/E Cycles

Federico M. Benelli
CTO, NandExt
Outline

• TLC Market
• TLC challenges
• TLC10 Technology Platform:
 ➢ Best In Between (BIB)
 ➢ Page-based CLAP-LDPC
 ➢ ThermoNAND
• Summary
Because Flash technology shrink has slowed down during the last few years (3D push out!), migration to TLC has recently gained a lot of traction in the market.
TLC Challenges

• TLC reliability prevents its adoption in systems where more than few hundreds of Program/Erase (P/E) cycles are required.

• In essence, consumer TLC targets read-intensive applications.

• More attractive applications, like Data Centers, need MLC-like reliability, i.e. 3,000 P/E cycles.
• TLC10 Technology Platform is a suite of proprietary NAND reliability enhancement technologies.

• TLC10 extends TLC reliability by 10x, from 300 to 3,000 P/E.

• At FMS ‘15 we introduce the following features:
 • Best In Between (BIB)
 • Page-based CLAP-LDPC
 • ThermoNAND
Flash vendors suggest Vt-shifts values (sometimes called read retry).

Problem is that these values target 300 P/E cycles.

At 3,000 P/E cycles reference voltages should be in a completely different place.
• Finding the right spot for each reference voltage is not trivial, because the number of combinations, given the 7 reference voltages, is huge.

• In order to tackle this problem, we developed a tool that allows a quick and reliable definition of the right Vt-shift strategy, based on NAND silicon characterization data.
Multi Code-Rate LDPC Challenge

- LDPC w/ Multi Code-Rate (CR) is a great solution to reduce capacity consumption
- Multi-CR works fine in theory, but “switching margin” Δ_{CR} is a killer
- Δ_{CR} burns capacity sooner than needed
- Some Flash controllers provides a lot of CRs, but most of them fall within Δ_{CR} and can’t be used
In order to exploit the full benefit of Multi-CR LDPC, at FMS ‘14 we introduced CLAP-LDPC (Closed Abstracted Proactive LDPC)

- CLAP-LDPC implements advanced decoder / H matrix
- “Closed” -> decisions are based on decoding parameters -> switching margins are strongly reduced
- “Abstracted” -> first order, it doesn’t depend on a specific NAND technology
- “Proactive” -> it automatically triggers the CR change
Page-based CLAP-LDPC

- Low/Mid/High pages don’t exhibit the same BER, under the same ageing conditions
- We optimize Code Rate per page category.
- CLAP-LDPC is independently applied to Low/Mid/High pages
NAND raw BER vs. Temperature

- NAND raw BER is strongly influenced by NAND T_{case}.
- Standard solution is to add Temp sensors to SSDs for real time monitoring.
• NAND management algorithms need to keep NAND Temp into account.
• Does a Temp variation over 1s affect reliability? How about 1 minute?
• If Temp changes of 20°C in a “short” period of time, what is the “effective” temp that we should consider?
• ThermoNAND answers all these questions and more… It basically outputs the right NAND Temp for Retention algorithms.
• In order to come up with the right recipe, we had to run a lot of correlation experiments between SSDs and raw NANDs.
Summary

• TLC10 can extend TLC’s lifetime by 10x
• TLC10 is a suite of proprietary NAND reliability enhancement technologies.
• Today we introduced 3 technologies:
 • Best In Between (BIB)
 • to properly select the right reference voltages over life
 • Page-based CLAP-LDPC
 • to optimize LDPC for Low/Mid/High Pages
 • ThermoNAND
 • to identify the “effective” NAND T_{case}
TLC10

federico@nandext.com

Thank You