Scaling Cloud-Native Virtualized Network Services with Flash Memory

Chloe Jian Ma (@chloe_ma)
Senior Director, Cloud Marketing
Mellanox Technologies
The Telco Industry is Going Through a Transformation

What if you could have this ...

... at the metro service edge
NFV - The Move From Proprietary Appliances To COTS-Based Cloud

Classical Network Appliance Approach

- Fragmented, purpose-built hardware.
- Physical install per appliance per site.
- Hardware development large barrier to entry for new vendors, constraining innovation & competition.

Network Function Virtualisation Approach

- High volume Ethernet switches
- High volume standard servers
- High volume standard storage
- Orchestration, automatic & remote install.
- Competitive & Innovative
- Open Ecosystem
- Independent Software Vendors

Removing tightly coupled network function’s software from underlying hardware
Why do Service Providers Want NFV?

- Scale Services Up and Down Quickly
- Use Standard Virtualized Servers to Reduce Costs
- Introduce New Services Quickly
- Optimize Network in Real Time

Equally important as cost reduction, service agility and scalability are driving service providers to adopt NFV.

Source: Infonetics Survey
Consolidation
• Consolidate multiple service appliances to one programmable device capable of providing different service types.

Virtualization
• Virtualize these services and move them to COTS, and create new software-only services in virtualized format.

Cloudification
• Services are architected to run in the cloud, and can dynamically scale and recover from failures in a scale-out manner across heterogeneous clouds.

Elasticity and Efficiency
NFV Evolution to Leverage Cloud
New Way to Scale Services in the Cloud

- Pets are given names like Sweetie Pie
- They are unique, lovingly hand raised and cared for
- When they get ill, you nurse them back to health

- Cattles are given numbers like cow101
- They are almost identical to other cattle
- When they get ill, you get another one

“Future application architecture should use Cattle but Pets with strong configuration management are viable and still needed.”

- Tim Bell, CERN
Cloud-Native Architecture

- Open, Stateless Microservices
- Intelligent Management
- Efficient Infrastructure

Application

Orchestration

Infrastructure
Cloud-Native Applications

Best Implemented as Stateless Programmable Micro-services

Auto-Provisioning
- Ability to provision instances of the application itself

Auto-Scaling
- Ability to scale up and down based on demand

Auto-Healing
- Ability to detect and recover from infrastructure and application failures
Transform to Cloud-Native Applications

Benefits

- Smaller Failure Domain
- Better Scalability and Resiliency
- Business Agility with CI/CD

Impact on Infrastructure

- Much denser virtual machine or container instances on a server
- Much higher requirements on storage performance
- Much higher volume of east-west traffic between application VMs

Monolithic • Stateful • Closed

Micro-services • Stateless • Open
An Example: VNF Transformation to be Cloud Native

- **Pre-Virtualization**
 - Complex Appliances
 - Hard to scale
 - Hard to recover from box failure
 - Over provisioning and waste of resources

- **Post-Virtualization**
 - Complex stateful software
 - Hard to scale
 - Hard to recover from VM failure
 - Automated provisioning possible
 - If you virtualize complex system, you get virtualized complex system

- **Into the Cloud**
 - Simple virtual appliances with stateless transaction processing coupled with state storage access
 - Scale almost infinitely
 - Fast recovery from VM failure
 - On-demand provisioning and consolidation
4.35 Gbps is roughly 2.8 Million packets per second

Each packet needs at least one read from cache to identify the session info.

Table 4: vSRX Services Gateway Key Performance Metrics

<table>
<thead>
<tr>
<th>Performance*</th>
<th>VMware</th>
<th>KVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firewall (UDP 1514 byte puts)</td>
<td>4.35 Gbps</td>
<td>2.6 Gbps</td>
</tr>
<tr>
<td>Firewall (IMIX)</td>
<td>1.05 Gbps</td>
<td>620 Mbps</td>
</tr>
<tr>
<td>Firewall ramp rate (TCP)</td>
<td>22,000 cycles/second</td>
<td>22,000 cycles/second</td>
</tr>
<tr>
<td>Firewall latency (512 byte UDP)</td>
<td>107 ms</td>
<td>87 ms</td>
</tr>
<tr>
<td>Firewall IPv6 (UDP 512 byte packets)</td>
<td>1.46 Gbps</td>
<td>829 Mbps</td>
</tr>
</tbody>
</table>
- New Firewall VM can potentially get $2.8 \times (3-1)/4 = 1.4$ Million packets per second.
- Assuming 1 session read for every 5 packets, we are looking at IOPS of 280K
Every firewall VM carries $2.8 \times \frac{(3-1)}{3} = 1.87$ Million packets per second.

Death of one firewall VM will add 0.94 Million pps to the other two remaining. Assuming 1 session read for every 5 packets, we are looking at IOPS of 188K
Faster Storage Needs Faster Network

Advanced Networking and Protocol Offloads Required to Match Storage Media Performance
Scale-Out Flash Storage Needs High-Speed Networking
SanDisk InfiniFlash, Maximizing Ceph Random Read IOPS

Random Read IOPs

<table>
<thead>
<tr>
<th>8KB Random Read, QD=16</th>
</tr>
</thead>
<tbody>
<tr>
<td>25% Read</td>
</tr>
<tr>
<td>Stock Ceph</td>
</tr>
</tbody>
</table>

Random Read Latency (ms)

<table>
<thead>
<tr>
<th>8KB Random Read, QD=16</th>
</tr>
</thead>
<tbody>
<tr>
<td>25% Read</td>
</tr>
<tr>
<td>Stock Ceph</td>
</tr>
</tbody>
</table>
Local NVMe is available TODAY inside Servers

- Now completed standard PCIe host controller interface for solid-state storage
 - Developed by industry consortium, 80+ members
 - Replaces SAS/sATA for flash
- Focus on efficiency, scalability and performance
 - Simple command set (13 required commands)
 - Multiple and deep queues, separate cmd and data
- Already in box driver in many OSes
“NVMe over Fabrics” is the Logical and Historical next step

- Sharing NVMe based storage across multiple CPUs is the next step
- Driven by the need for the best possible compute efficiency and shared advantages
- Shared storage requires a Network/Fabric
- NVMe over Fabrics standard in development
 - Mellanox Architects Contributing
 - Version 1.0 4Q15
- RDMA protocol is required
NAB Demo of Early NVMe over Fabric

NAB Show April 11 - 16, 2015 Las Vegas

10GBytes/s reads, 8GB writes, 2.5M random read IOPS (4KB block size), Max latency 6-8us over local

From PR

The Mangstor NMX Series appliances address the need of video editing and shared game development applications requiring high R/W bandwidth while maintaining low latency to shared flash storage in cluster server configurations. The solution uses Mellanox VPI adapters, supporting NVMe over Fabrics using either RoCE or IB to provide high throughput at low latency.

Mangstor’s storage appliance provides a non-proprietary solution which outperforms traditional SAN-attached all-flash and hybrid arrays, and enables customers to seamlessly evolve their traditional server attached storage to growing server-SAN storage environments.
Thank You!

Contact: Chloe Jian Ma (@chloe_ma)
chloe@Mellanox.com