High-Temperature Discrete and Managed NAND Solutions

Chris Bueb
Embedded Memory System Architect
Micron Technology, Inc.

©2015 Micron Technology, Inc. All rights reserved. Information, products, and/or specifications are subject to change without notice. All information is provided on an "AS IS" basis without warranties of any kind. Statements regarding products, including regarding their features, availability, functionality, or compatibility, are provided for informational purposes only and do not modify the warranty, if any, applicable to any product. Drawings may not be to scale. Micron, the Micron logo, and all other Micron trademarks are the property of Micron Technology, Inc. All other trademarks are the property of their respective owners.
Agenda

- Embedded Temperature Ranges
- Why Temperatures Above 85°C?
- Comparison of NAND-Based Solutions
- NVM Trends
- High-Temperature Data Integrity Challenges
- Summary
Embedded Temperature Ranges

- **Commercial**: 0°C to 70°C
 - Cost-optimized

- **Industrial (IT)**: –40°C to 85°C
 - Uncontrolled temperature environments

- **Beyond industrial**: –40°C up to 105°C
 - Demonstrated to exceed 85°C

Focus is on “beyond industrial”
Fanless and quiet
Small and cute
Thermal suffocation
Increased electronics in automotive with higher temperatures
 • Automakers are jointly defining temperature ranges that exceed 85°C
Comparison of NAND-Based Solutions

<table>
<thead>
<tr>
<th></th>
<th>Discrete NAND</th>
<th>e.MMC</th>
<th>SSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density range</td>
<td>16MB to 64GB</td>
<td>2GB to 128GB</td>
<td>2GB to 512GB</td>
</tr>
<tr>
<td>Temperature range</td>
<td>–40°C to 105°C</td>
<td>–40°C to 105°C</td>
<td>–40°C to 85°C</td>
</tr>
<tr>
<td>Media management effort</td>
<td>Low to High</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>

- All solutions are essential across the entire range of high-temperature embedded applications
- Choice depends heavily on density and willingness to manage NAND media

Flash Memory Summit 2015
Santa Clara, CA
NVM Trends

- Improved NAND performance
- Improved discrete NAND usability
- Low-density NAND still needed
- More aggressive product qualifications
High-Temperature Data Integrity Challenges

- High temperatures make data retention worse

- Higher temp \Rightarrow wider X-temp \Rightarrow rel challenges
 - SLC to improve P/E cycling and data retention
 - Relaxation of cold temperature extreme

- Data refresh is an important consideration
 - Longer product life (in excess of 15 years)
 - Sustained high temperatures
Summary

- Maximum embedded temperatures are rising
- Embedded product life is increasing
 - Discrete and managed NAND are fulfilling these requirements
- High-temperature data integrity issues must be solved at all levels of integration